Checking the Paths to Identify Mutant
Application on Embedded Systems

Ahmadou Al Khary Séré!, Julien Iguchi-Cartigny?, and Jean-Louis Lanet?

! XLIM Labs, Université de Limoges, JIDE, 83 rue Isle, Limoges, France
ahmadou-al-khary.sere@xlim.fr
2 Université de Limoges, JIDE, 83 rue Isle, Limoges, France
{julien.cartigny, jean-louis.lanet }@unilim.fr

Abstract. The resistance of Java Card against attack is based on soft-
ware and hardware countermeasures, and the ability of the Java platform
to check the correct behaviour of Java code (by using bytecode verifica-
tion for instance). Recently, the idea to combine logical attacks with a
physical attack in order to bypass bytecode verification has emerged.
For instance, correct and legitimate Java Card applications can be dy-
namically modified on-card using laser beam. Such applications become
mutant applications, with a different control flow from the original ex-
pected behaviour. This internal change could lead to bypass control and
protection and thus offer illegal access to secret data and operation inside
the chip. This paper presents an evaluation of the ability of an applica-
tion to become mutant and a new countermeasure based on the runtime
check of the application control flow to detect the deviant mutations. ...

Keywords: Smart Card, Java Card, Fault Attack, Control Flow Graph

1 Introduction

A smart card can be viewed as a secure data container, since it securely stores
data and it is securely used during short transactions. Its safety relies first on the
underlying hardware. To resist probing an internal bus, all components (memory,
CPU, cryptoprocessor...) are on the same chip which is embedded with sensors
covered by a resin. Such sensors (light sensors, heat sensors, voltage sensors,
etc.) are used to disable the card when it is physically attacked. The software
is the second security barrier. The embedded programs are usually designed
neither for returning nor modifying sensitive information without guaranty that
the operation is authorized.

Java Card is a kind of smart card that implements the standard Java Card
3.0 [7] in one of the two editions “Classic Edition” or “Connected Edition”. Such
smart card embeds a virtual machine, which interprets application bytecodes al-
ready romized with the operating system or downloaded after issuance. Due to
security reasons, the ability to download code into the card is controlled by a
protocol defined by Global Platform [4]. This protocol ensures that the owner of
the code has the necessary credentials to perform the action. Java Cards have

shown an improved robustness compared to native applications regarding many
attacks. They are designed to resist to numerous attacks using both physical
and logical techniques. Currently, the most powerful attacks are hardware based
attacks and particularly fault attacks. A fault attack modifies part of memory
content or signal on internal bus and lead to deviant behaviour exploitable by an
attacker. A comprehensive consequence of such attacks can be found in [6]. Al-
though fault attacks have been mainly used in the literature from a cryptanalytic
point of view see [, 5, 8], they can be applied to every code layers embedded in
a device. For instance, while choosing the exact byte of a program the attacker
can bypass countermeasures or logical tests. We called such modified application
mutant.

Designing efficient countermeasures against fault attacks is important for
smart card manufacturers but also for application developers. For the manufac-
turers, they need countermeasures with the lowest cost in term of memory and
processor usage. These metrics can be obtained with an evaluation on a target
[9]. For the application developers, they have to understand the ability of their
applets to become mutants and potentially hostile in case of fault attack. Thus
the coverage (reduction of the number of mutant generated) and the detection
latency (number of instructions executed between an attack and its detection)
are the most important metrics. In this paper we present a workbench to evalu-
ate the ability of a given application to become a hostile applet with respect to
the different implemented countermeasures, and the fault hypothesis.

The rest of this paper is organized as follow: first, we introduce a brief state
of the art of fault injection attacks and existing countermeasures, then we dis-
cuss about the new countermeasure we have developed.Then, we present the
experimentation and the results, and finally we conclude with the perspectives.

2 Fault Attacks

Faults can be induced into the chip by using physical perturbations in its execu-
tion environment. These errors can generate different versions of a program by
changing some instructions, interpreting operands as instructions, branching to
other (or invalid) labels and so on.

To prevent a fault attack to happen, we need to know what its effects on the
smart card are. References [3, 13] has already discussed about fault model in
detail.

In real life, an attacker physically injects energy in a memory cell to change
its state. Thus and up to the underlying technology, the memory physically takes
the value 0x00 or OxFF. If memories are encrypted the physical value becomes
a random value (more precisely a value which depends on the data, the address,
and an encryption key). To be as close as possible to the reality, we have decided
to choose the precise byte error that is the most realistic fault model. Thus, we
assume that attacker can:

— make a fault injection at a precise clock cycle (she can target any operation
she wants),

— only set or reset a byte to 0x00 or to OxFF up to the underlying technology
(bsr fault type), or she can change this byte to a random value out of his
control (random fault type),

— target any memory cell she desires (she can target a precise variable or
register).

3 Defining a Mutant Application

The mutant generation and detection is a new research field introduced simulta-
neously by [2, 12] using the concepts of combined attacks, and we have already
discussed about mutant detection in [11]. To define a mutant application, we
use an example on the following debit method that belongs to a wallet Java
Card applet. In this method, the user pin must be validated prior to the debit
operation.

private void debit(APDU apdu) {
if (pin.isValidated()) {
// make the debit operation
} else {
ISOException.throwIt (SW_PIN_VERIFICATION_REQUIRED);
}
}

Table 1. Bytecode representation before attack

Byte Bytecode

00 : 18 00 : aload_O

01 : 83 00 04|01 : getfield #4

04 : 8B 00 23|04 : invokevirtual #18
07 : 00 3B 07: ifeq 59

10 ¢ ... 10 :

59 : 13 63 01|59 : sipush 25345
63 : 8D 00 OD|63 : invokestatic #13
66 : TA 66 : return

In Table 1 resides the corresponding bytecode representation. An attacker
wants to bypass the pin test. She injects a fault on the cell containing the con-
ditional test bytecode. Thus the ifeq instruction (byte 0x60) changes to a nop
instruction (byte 0x00). The obtained Java code follows with its bytecode rep-
resentation in Table 2.

private void debit(APDU apdu) {
// make the debit operation

ISOException.throwIt (SW_PIN_VERIFICATION_REQUIRED);

Table 2. Bytecode representation after attack

Byte Bytecode

00 : 18 00 : aload_O

01 : 83 00 04|01 : getfield #4

04 : 8B 00 23|04 : invokevirtual #18

07 : 00 07 : nop
08 : 00 08 : nop
09 : 3B 09 : pop
10 = ... 10 :

59 : 13 63 01|59 : sipush 25345
63 : 8D 00 OD|63 : invokestatic #13
66 : TA 66 : return

The verification of the pin code is bypassed, the debit operation is made and
an exception is thrown but too late because the attacker had already achieved
his goal. This is a well example of dangerous mutant application: “an application
that has been modified by an attack that is correct for the virtual machine in-
terpreter but that doesn’t have the same behavior than the original application”.
This attack has modified the control flow of the application and the goal of
the countermeasure developed in this paper is to detect when such modification
happen.

4 A Novel Approach to Path Check During Application
Runtime

We have already proposed several solutions to check code integrity during exe-
cution in our previous publications [9, 10]. This paper is about the control flow
integrity. Thus this section discusses existing countermeasures which protect the
control flow integrity.

4.1 Using Java Annotation

The proposed solution uses Java annotations, when the virtual machine inter-
preter encounters an annotation it switches to a “secure mode”. The fragment
of code that follows, shows the use of an annotation on the debit method. The
@SensitiveType annotation denotes that this method must be checked for in-
tegrity with the PATHCHECK mechanism.

@SensitiveType{

sensitivity= SensitiveValue.INTEGRITY,
proprietaryValue="PATHCHECK"

}

private void debit (APDU apdu) {

if (pin.isValidated()) {

// make the debit operation

} else {
ISOException.throwIt(SW_PIN_VERIFICATION_REQUIRED) ;
}

}

With this approach, we provide a tool that process an annotated classfile.
The annotations become a custom component containing security information.
This is possible because the Java Card specification [20] allows adding custom
components to a classfile: a virtual machine processes custom components if
it knows how to use them or else, silently ignores them. But to process the
information contained in these custom components the virtual machine must be
modified.

This approach allows that to achieve a successful attack, an attacker needs to
simultaneously inject two faults at the right time, one on the application code,
the other on the system during its interpretation of the code which is something
hard to realize and outside the scope of the chosen fault model. Now we expose
the principle of the detection mechanism.

4.2 Principle of the “PATHCHECK” (PC) Method

The principle of the mechanism is divided in two parts: one part off-card and
one part on-card. Our module works on the byte code, and it has at its disposal
sufficient computation power because all the following transformations and com-
putations are done on a server (off-card). It is a generalist approach that is not
dependent of the type of application. But it cannot be applied to native code
such as cryptographic algorithm.

Off-card The first step is to create the control flow graph of the annotated
method (in the case that it is an annotated class the operation is repeated for all
the method belonging to the class), by separating its code into basic blocks and
by linking them. A basic block is a set of uninterrupted instructions; It is ended
by any byte code instruction that can break the control flow of the program.

Once the method is divided into basic blocks, the second step is to compute
its control flow graph; the basic blocks represent the vertices of the graph and
directed edges in the graph denote a jump in the code between two basic blocks
(c.f. Fig. 2).

The third step is about computing for each vertex that compounds the control
flow graph a list of paths from the beginning vertex. The computed path is
encoded using the following convention:

— Each path begins with the tag “01”. This to avoid an attack that changes
the first element of a path to 0x00 or to 0xFF.

— If the instruction that ends the current block is an unconditional or con-
ditional branch instruction, when jumping to the target of this instruction
(represented by a low edge in Fig. 2), then the tag “0” is used.

— If the execution continues at the instruction that immediately follows the
final instruction of the current block (represented by a top edge in Fig. 2),
then the tag “1” is used.

If the final instruction of the current basic block is a switch instruction, a
particular tag is used, formed by any number of bits that are necessary to encode
all the targets. For example, if we have four targets, we use three bits to code
each branch (like in Fig. 1). Switch instructions are not so frequent in Java Card
applications. And to avoid a great increase of the application size that uses this
countermeasure, they must be avoided. Thus a path from the beginning to a

001 100
010 011

ONORORO

Fig. 1. Coding a switch instruction

given basic block is Xj...X,, (where X corresponds to a 0 or to a 1 and n is the
maximum number of bit necessary to code the path). In our example, to reach
the basic block 9, which contains the update of the balance amount, the paths
are:01 0000 001and01 0000 0 1.

On-card When interpreting the byte code of the method to protect, the virtual
machine looks for the annotation and analyzes the type of security it has to
use. In our case, it is the path check security mechanism. So during the code
interpretation, it computes the execution path; for example, when it encounters
a branch instruction, when jumping to the target of this instruction then it saves
the tag “0”, and when jumping to the instruction that follows it saves the tag
“1”. Then prior to the execution of a basic block, it checks that the followed
path is an authorized path i.e a path that belong to the list of path computed
for this basic block. For the basic block 9, it is necessary one of the two previous
paths, if not it is probably because to arrive here the interpreter has followed a
wrong path; therefore, the card can lock itself.

O
-0 N
@/O f @1/(;) @1 17‘
] o7 0\1 o7 o
O]

Fig. 2. Control flow graph of the debit method

\

ON

In the case that a loop is detected (backward jump) during the code interpre-
tation, then the interpreter checks the path for the loop, the number of reference
and the number of value on the operand stack before and after the loop, to be
sure that for each round the path remains the same.

5 Experimentation and Results

5.1 Resources Consumption

Table 3 shows the metrics for resources consumption obtained by activating the
detection mechanism on all the method of our test applications. The increasing
of the application size is variable, this is due to the number of paths presents
on a method. Even if the mechanism is close to 10 % increasing of application
size and 8 % of CPU overhead, the developer can choose when to activate only
for sensitive methods to preserve resources. This countermeasure needs small
changes on the virtual machine interpreter if we refer to the 1 % of increasing.
So we can conclude that it is an affordable countermeasure.

Table 3. Ressources consumption

Countermeasures| EEPROM| ROM | CPU
Field of bits +3% |+1%+3%
Basic block +5% |+1%|+ 5%
Path check +10% [+1 %|+8 %

5.2 Mutant Detection and Latency

To evaluate the path check detection mechanism, we have developed an abstract
Java Card virtual machine interpreter. This abstract interpreter is designed to
follow a method call graph, and for each method of a given Java Card applet, it
simulates a Java Card method’s frame. A frame is a memory area allocated for
the operand stack and the local variables of a given method.

The interpreter can also simulate an attack by modifying the method’s byte
array. This is important because it allows to reproduce faults on demand. On
top of the abstract interpreter, we have developed a mutant generator. This tool
can generate all the mutants corresponding to a given application according to
the chosen fault model. To realize this, for a given opcode, the mutant generator
changes its value from 0x00 to OxFF, and for each of these values an abstract
interpretation is made. If the abstract interpretation does not detect a modifica-
tion then a mutant is created enabling us to regenerate the corresponding Java
source file and to color the path that lead to this mutant.

The mutant generator has different mode of execution:

— The basic mode: the interpreter executes the instruction pushing and popping
element on the operands stack and using local variables without check. In
this configuration instructions can use elements of other methods frame like
using their operands stack or using their locals. When running this mode, it
has no countermeasures activated.

— The simple mode: the interpreter checks that no overflow or no underflow oc-
curs, that the used locals are inside the current table of locals, and that when
a jump occurs it’s done inside the method. They consist in some verifications
done by the Java verifier.

— The advanced mode: is the simple mode with the ability to activate or to
deactivate a given countermeasures like the developed ones:path checking
mechanism (PC), field of bits mechanism (FB) see [9], or PS mechanism. PS
is a detection mechanism that is not described in this paper and for which
a patent is pending.

The Table 4 shows the reduction of generated mutants in each mode of the
mutant generator for an application. The second line shows the number of mutant
generated in each mode of the mutant generator. The third line of those tables
shows the latency.

The latency is the number of instruction executed between the attack and the
detection. In the basic mode no latency is recorded because no detection is made.
This value is also really important because if a latency if too high maybe instruc-
tions that modify persistent memory like: putfield, putstatic or an invoke in-
struction (invokestatic, invokevirtual, invokespecial, invokeinterface)
can be executed. If a persistent object is modified then it is manipulated during
all the future session between the smart card and a server. So this value has to
be as small as possible to lower the chances to have instructions that can modify
persistent memory.

Table 4. Wallet (simple class) - 470 Instructions

Basic mode|Simple mode| PC | FB | PS
Number of mutants 440 54 23 | 10 | 30
Latency - 291 3,33(2,43|2,92

Path check fails to detect mutant when the fault that generate the mutant
don’t influence the control flow of the code. Otherwise, when a fault occurs
that alter the control flow of the application then this countermeasure detects
it. With this countermeasure it becomes impossible to bypass systems calls like
cryptographic keys verification. And if it remains some mutant, applicative coun-
termeasures can be applied on demand to detect them.

6 Conclusion and Future Works

We had presented in this paper, a new approach that is affordable for the card
and that is fully compliant with the Java Card 2.x and 3.x specification. More-
over it does not consume too much computation power and the produced binary
files are under a reasonable limit in term of size. It does not disturb the applet
conception workflow, because we just add a module that will makes lightweight
modification of the byte code. It saves time to the developer who wants to pro-
duce secured applications thanks to the use of the sensitive annotation. Finally,
it needs a tiny modification of the java virtual machine. It also has a good mutant
applications detection capacity.

‘We have implemented all these countermeasures inside a smart card in order
to have metrics concerning memory footprint and processor overhead, which
are all affordable for smart card. In this paper we presented the second part
of this characterization to evaluate the efficiency of countermeasures in smart
card operating system. We provide a framework to detect mutant applications
according to a fault model and a memory model. This framework is able to
provide to a security evaluator officer all the source code of the potential mutant
of the application. She can decide if there is a threat with some mutants and
then to implement a specific countermeasure.

Within this tool, either the developer or security evaluator officer is able to
take adequate decision concerning the security of its smart card application. For
the developer company, reducing the size of the embedded code minimizes the
cost, of the application. For the security evaluator it provides a semi automatic
tool to perform vulnerability analysis.

References

[1] C. Aumuller et al. “Fault attacks on RSA with CRT: Concrete results and
practical countermeasures”. In: Lecture Notes in Computer Science (2003),
pp. 260-275.

G. Barbu, H. Thiebeauld, and V. Guerin. “Attacks on Java Card 3.0 Com-
bining Fault and Logical Attacks”. In: Smart Card Research and Advanced
Application, Cardis 2010 LNCS 6035 (2010), pp. 148-163.

J. Blomer, M. Otto, and J.P. Seifert. “A new CRT-RSA algorithm secure
against Bellcore attacks”. In: Proceedings of the 10th ACM conference on
Computer and communications security. ACM New York, NY, USA. 2003,
pp. 311-320.

Global platform group. Global platform official site. 2010. URL: http://
www.globalplatform.org.

L. Hemme. “A differential fault attack against early rounds of (triple-
) DES”. In: Cryptographic Hardware and Embedded Systems-CHES 2004
(2004), pp. 170-217.

J. Iguchi-Cartigny and J.L. Lanet. “Developing a Trojan applets in a smart
card”. In: Journal in Computer Virology (2009), pp. 1-9.

Sun Mycrosystems. Java CardTM 3.0.1 Specification. Sun Microsystems.
2009.

G. Piret and J.J. Quisquater. “A differential fault attack technique against
SPN structures, with application to the AES and Khazad”. In: Crypto-
graphic Hardware and Embedded Systems-CHES 2003 (2003), pp. 77-88.
A.A. Sere, J. Iguchi-Cartigny, and J.L. Lanet. “Automatic detection of
fault attack and countermeasures”. In: Proceedings of the 4th Workshop
on Embedded Systems Security. ACM. 2009, pp. 1-7.

A A. Sere, J. Iguchi-Cartigny, and J.L. Lanet. “Checking the Path to Iden-
tify Control Flow Modification”. In: PAca Security Trends In embedded
Systems (2010).

A.A. Sere, J. Iguchi-Cartigny, and J.L. Lanet. “Mutant applications in
smart card”. In: Proceedings of CIS 2010 (2010).

E. Vetillard and A. Ferrari. “Combined Attacks and Countermeasures”.
In: Smart Card Research and Advanced Application, Cardis 2010 LNCS
6035 (2010), pp. 133-147.

D. Wagner. “Cryptanalysis of a provably secure CRT-RSA algorithm”. In:
Proceedings of the 11th ACM conference on Computer and communications
security. ACM New York, NY, USA. 2004, pp. 92-97.

http://www.globalplatform.org
http://www.globalplatform.org

	Checking the Paths to Identify Mutant Application on Embedded Systems

