
Smart Card Reverse-Engineering Binary Code
Execution Using Side-Channel Analysis

François-Xavier Aranda
Thales 3S,

18 Avenue Édouard Belin, 31000 Toulouse, France
Email: francois-xavier.aranda@thalesgroup.com

Jean-Louis Lanet
SSD Team – XLIM/Université de Limoges

83 Rue d’Isle, 87000 Limoges, France
Email: jean-Louis.lanet@xlim.fr

Abstract—Using side-channel observations to reverse-engineer
code execution is a research area that has been refined over the
past decade. Mostly done on protected encryption algorithms at
the beginning, these particular analysis aim more and more
global code recovery. Based on the statistical behavior of a
targeted platform, they study and look for a way to characterize
the execution of instructions into side-channel signals. Disassem-
bling a program, based only on power statistical analysis and
some public material, is a challenge that is considered in very
few papers. The most recent one applies "Template Attacks"
and recovers most of instructions executed. Another choose
pattern recognition to build a dictionary in order to recover code
sequences, while a prior one uses "Differential Power Analysis"
to understand and retrieve the implementation of known, or
unknown, block cipher algorithms such as DES1. We present
these three approaches in this paper as a state of the art of
reverse-engineering methods aiming code recovery while using
side-channel analysis.

I. INTRODUCTION

A smart card usually contains a microprocessor and var-
ious types of memories: RAM (for runtime data and OS
stacks), ROM (in which the operating system and the romized
applications are stored), and EEPROM (to store the persistent
data). Due to significant size constraints of the chip, the
amount of memory is small. Today, most smart cards on
the market have at most 5 KB of RAM, 256 KB of ROM,
and 256 KB of EEPROM. A smart card can be viewed as
a secure data container, since it securely stores data and it
is securely used during short transactions. Its safety relies
first on the underlying hardware. To resist from probing an
internal bus, all components (memory, CPU, cryptoprocessor,
etc.) are on the same chip which is embedded with sensors
covered by a resin. Such sensors (light sensors, heat sensors,
voltage sensors, etc.) are used to disable the card when it
is physically attacked. The software is the second security
barrier. The embedded programs are usually designed neither
for returning nor modifying sensitive information without
guaranty that the operation is authorized.

Smart cards are devices prone to attacks in order to gain
access to services or assets stored by the card. Several means
have been used to retrieve these valuable information and
side channel analysis or fault injection appears to be the most
efficient. One of the assets is the program used by the smart
card. Having a precise knowledge of the software and in
particular the control flow used could be helpful for new
attacks or understanding the algorithms.

Reverse engineering is a process of reading the software’s
binary code to find what the software can make the computer

1Data Encryption Standard.

do. The term reverse engineering has its origin in the analysis
of hardware where the practice of deciphering designs from
products is commonplace. While the hardware objective
traditionally is to duplicate the system, the software objective
is most often to gain a sufficient design-level understanding.
There is a lot of commercially available reverse engineering
tools that can provide a set of limited views of the source
code. Unfortunately none of them can be applied to the
smart card world, because the binary code is romized and
no access to the code is provided to the attacker. The only
way is to analyze information that leak from the system.
One is particularly interesting, the power consumption which
reflects the activity of the processor.

II. INSTRUCTIONS RECOVERY PROBLEM AND

SIDE-CHANNEL ANALYSIS

Before starting to describe the various methods developed
for instructions recognition on informations’ systems, we
need to clearly expose both reasons and issues addressed
to this particular research area. It should be a good way
to understand the ins leading of such methods. As side-
channel analysis is not only used for reverse-engineering
processes but also in plenty other domains, we consider
interesting to present furthermore these procedures offering
ways to extract protected informations and exploit them using
statistical methods.

A. Why Recovering Instructions Sequences?

Obviously, a code sequence should be considered as a sen-
sitive information and should be protected from disclosure.
Intellectual property and safety are important in software in-
dustry as developing new algorithms and implementations is
expensive and time consuming. In the cryptography domain,
knowing an algorithm architecture can reveal defaults and
damage both its integrity and efficiency.

Reverse-engineer an algorithm implementation can also
be used by security providers to check if common flaws
are avoided to guaranty a product marketing. So, being
able to prevent software misuse and protect source code
from replication is critical, not only in security domain but
generally in computer programming.

However, recover which instructions are executed on infor-
mation systems is not trivial and requires some mathematical,
physical and electronics background to be performed. First,
an attacker should be able to gain knowledge on the targeted
platform. Then, he should be able to exploit this information
either by observation or statistic analysis. Public materials
as physical leakage are, of course, very useful during a

characterizing step. This modeling process requires several
skills and imagination to find the better way to fit a system
behavior. For all these reasons, code sequences reverse-
engineering is capital and requires special attention.

B. Side-Channel Analysis and Emission Sources

Using electric devices, such as embedded systems, to store
or compute information may involve some risks of disclosure.
When an electrical system is on, its power consumption,
for example, may vary depending on which operations it
processes or data it carries. A malicious user of this platform
could exploit this information to gain protected knowledge,
and use it to corrupt or reproduce a targeted system.

Side-channel leakage can be of many kind. All has some-
thing to do with electrical devices power consumption. This
is why we start our presentation of side-channel analysis with
power consumption monitoring. Figure 1 shows a way to
capture power consumption signals from a microprocessor.

Figure 1. Current probe installation scheme on a microprocessor.

If power traces differ because operations or entries from
one signal to another, one can easily conclude that infor-
mations are leaking through out the device. Quantifying
this information and using it in order to understand inhere
processes is part of the side-channel analysis. It can lead an
attacker to use statistical analysis as well as signal theory to
extract informations before exploiting it.

The very first side-channel source was the time differ-
ence between two same subroutine executions using two
different entry data. This kind of attacks, so called "Timing
Attack" [10], was particularly useful to get knowledge on
RSA2 keys during the "Square and Multiply" step of mod-
ular exponentiation. In fact, the algorithm duration strongly
depends on the different operations it performs. By observing
precisely enough the signals retrieved, attackers were able to
simply read key bits during exponentiation.

Later, consumption model evolved to increase the preci-
sion on inhere data manipulation. SPA3 methods were able
to prove that, not only power consumption is influenced by
computation, but it is also related to data processing.

In fact, as mathematical operations are performed by
switching logical gates states, these changes need an electri-
cal impulsion theoretically detectable on power traces. This
can be an issue when the leaking implementation is meant
to provide a secure encryption such as DES or RSA. In RSA
case, once again, the "Square and Multiply" algorithm flaw
depends on key manipulation. When a zero is treated, only
the square step was performed, otherwise it performed both
square and multiply operations.

2Rivest Shamir Adleman.
3Simple Power Analysis.

Simultaneously to SPA, another well known attack was
developed to exploit the differences between two signals to
extract informations. DPA [11], uses the bias caused by a
crypto-system’s power consumption while it processes and
uses cipher keys. One of the great improvement compared
to SPA was that this method settle for noisy signals as it
performed a cleaning step by characterizing it.

Using statistical analysis of a system power consumption,
while executing thousand different operations, provides to
a malicious user a consumption model. It allows him to
reproduce the targeted system electrical behavior with a
certain measurable error. Next, by analyzing the differences
between the simulated consumption and the actual one while
guessing the value of the key bits, being right or wrong. This
method allows him sorting this proposition and recover the
encryption key.

With quite the same philosophy, CPA [1] is based on
statistical models. It differs from DPA by its discrimination
tool. During CPA, the correlation coefficient value is used
to evaluate a guessed proposition. This method uses a con-
sumption model based on the Hamming distance or weight,
itself validated by experiments.

Always with the same goal of better approaching a system
behavior, the Hamming model uses theoretical aspects of
logical gates while switching from a state to another. If a
logical gate does not switch, its own electrical consumption
shall remain the same. By considering that the overall system
consumption is theoretically proportional to the sum of the
logical cells’ one, this model focuses on their state inversion
or preservation to estimate a system power consumption.
Then, one can compare the estimation results to an actual
signal with statistical tools like correlation coefficient.

Other signals carry information one can use to perform
statistical analysis. For example, due to magnetic induction,
any current variation provides a magnetic field fluctuation
which, being related to power consumption, leaks exploitable
information. Besides this physic fact, variations into electro-
magnetic field give very useful spacial informations for an
attacker. These emanations, alone or combined to others side-
channel signals, can be also used to reduce monitoring noises
coming from non targeted functionalities.

For example, if one knows where a specific key is stored,
by positioning an electro-magnetic probe at this location,
he can better target signal acquisition. Therefore, each time
this data is manipulated, the magnetic traces obtained should
be more precise and give better results than the power
analysis methods presented before. Henceforth, these attacks
are named SEMA, DEMA and CEMA, where EM stand for
"Electro-Magnetism" [14], [13], [6].

Last, we quickly present two other ways to gain knowledge
with side-channel sources. Because of Joule effect, any
resistive electrical system results in heat generation. The
thermal difference gives a spacial information on where
specific operations are executed [12], [16], [9]. Like in
electro-magnetism based attacks, and according to the heat
intensity, one can distinguish if memories are read or written.
It can be used, for example, to retrieve where are stored static
tables used by encryption algorithms.

Light emission can also be used to locate parts of algo-
rithm. This method was recently used to perform DPA on a

FPGA4 implementing a DES algorithm [5]. This particular
method requires the attacker to proceed to the opening of
the ceramic package that generally protects any system in
order to observe the light emission. Unlike previous side-
channel sources, this one uses an invasive method to get the
information and thus is not used very often. This concludes
our overview of side-channel origins and analysis that are
commonly used for reverse-engineering method.

III. REVERSE-ENGINEERING OF INSTRUCTION

SEQUENCES

Here, we discuss various prior works on code recovery us-
ing side-channel analysis. As seen during Section II-A, many
low-programming problems could be avoided by recovering
the actual code sequence executed on a system. We have seen
that the major difficulty was to clearly identify operations or
data manipulated, which side-channel analysis can answer in
many situations.

Our state of the art presents chronologically three previous
papers describing three original ways to treat this reverse-
engineering problem. For each, we present context and
knowledge needed to precisely understand the whole process.
Then we describe each step for each method before listing
pros and cons, and give our opinion.

A. SCARE of the DES

Published in 2005 during "Applied Cryptography and
Network Security" conference, this article [4] written by
Remy Daudigny, Herv Ledig, Frederic Muller and Frederic
Valette, presents SCARE5 on block cipher algorithm DES.
By observing power consumption against ins and outs of
the encryption standard, they manage to recover specific
implementation of each of its component.

This method was applied on DES but could have been
tested on any symmetric algorithm using block encryption.
The interest to test this approach on DES was that its
architecture was public and allows quick verification on the
reverse-engineering results. Based on Christophe Clavier’s
work on A3/A8 algorithm [3], they consider having no infor-
mation on the implementation of each step of the encryption
process before applying their method. In next section, we
quickly remind DES scheme before precisely describing the
attack principles and present its application.

1) Data Encryption Standard Scheme and History: This
block cipher algorithm using private keys was selected by
the United States of America, National Bureau of Standard
in November 1976. At this time, IBM was proposing its algo-
rithm called "Lucifer" and designed by Horst Feistel in 1971.
After several modifications, asked by the National Security
Agency, the Lucifer child, DES, obtained its standardization
in 1977.

On Figure 2, we detail Feistel network, still used nowadays
for various block cipher algorithms and hash functions, such
as Threefish, Triple DES or SHADE. As one can see, it is
composed of several nested rounds using XOR and non linear
function F combinations. This last uses a different key for
each loop, itself derived from a master key. The Figure 3
depicts the key scheduling process for the DES algorithm.

4Field-Programmable Gate Array
5Side-Channel Analysis for Reverse-Engineering

Figure 2. Feistel Standard Scheme.

DES needs 56-bit keys and processes 64-bit data blocks.
It requires 16 rounds, each one spiting the previous 64-bit
message into two 32-bit data blocks. The right part of the
previous message is computed with the F function while the
left part is added to the resulting block.

Figure 3. On the left : DES non linear function F. On the right :
Key scheduling scheme of DES.

From one Feistel scheme to another, the F function and
key scheduling method differ but not necessarily the global
structure. In DES case, key schedule uses shift operation and
two Permutation Choice tables (PC1 and PC2) to provide
subkeys to each round. Its non linear function is described
on Figure 3.

For its F function, DES computes the right part of the
previous round result with an expansion table E before
adding the output to the round subkey. Next, thanks to eight
S-Boxes providing a non linear transformation, it reduces
the 56-bit intermediate message to a 32-bit one. Last, a
Permutation table P mixes the message bits to provide, to
the next round, its left part of the message.

Before executing the 16 loops to the 64-bit message block,
DES applying an Initial Permutation (IP) on it. At the end
of iterations, the inverse table (IP−1) is applied to the last
intermediate 64-bit message before giving the encrypted one.

2) SCARE Principles: The article goal is to demonstrate
that using side-channel information leakage on a system
implementing a DES algorithm can lead to disclose tables
values of each Feistel component. These secrets, constant
part of the algorithm, are supposed to be unknown and DES
example is taken to prove the method.

The authors propose to use statistic power analysis to see
which message bit has the strongest probability to be manip-
ulated at given clock cycles. To perform DPA, the attacker

needs M power traces corresponding to M messages being
encrypted by DES. Lets τi(t) be the power consumption
observed for the message i at time t. They consider time
division as clock cycles, meaning a power trace value at time
t represents its value for the clock cycle index t. Next, they
choose one bit a from plain-text to sort the power traces into
two groups G0 and G1, depending on its value. Then, for
each clock cycle t they compute the Vt value :

Vt =

∣∣∣∣∣∣ 1

|G0|
∑
τj∈G0

τj(t)−
1

|G1|
∑
τj∈G1

τj(t)

∣∣∣∣∣∣ (1)

If Vt > λ, λ being an appropriate threshold, the bit a is
manipulated during clock cycle t otherwise it is not.

After being able to detect group of bits manipulation
during each table application, they manage to rebuild its
values. For example, while expansion table is applied, the
first group of bits manipulated together during 5 clock cycles
are bits 0, 1, 2, 3, 4 and 31. Now, it turns out the first line of
expansion table manipulates these 6 bits. The 5 next clock
cycles observations show a manipulation of bits 3, 4, 5, 6, 7
and 8, corresponding to the second line of E table.

They continue their attack and finally succeed in recov-
ering each table values presented before, except for the
S-Boxes. They voluntary skip this part, arguing that the
previous Clavier’s work, on A3/A8 algorithm, do a similar
attack to recover tables from a private cipher algorithm.
However, they find a specific implementation by observing
each S-Box independently. They saw that, when the second
S-Box was applied, the output bits from the first one was
also manipulated. They explain these results by the fact that
S-Boxes output may be temporarily stored into the same
register.

They make the same observation while monitoring the
key schedule process. It seems that the round sub-key bits
are using the same register than the intermediate cipher
bits. They conclude that this information may be useful if
an attacker wants to retrieve a key with a known plain-
text/cipher attack.

The authors concluded their article by justifying that the
SCARE method is not only for reverse-engineering private
block cipher algorithm but can also be considered as a prior
step to more conventional attacks such as SPA and DPA.
Obviously, facing the amount of information depending on
implementation they manage to recover, an attacker may
accelerate its classic statistic analysis by using SCARE in
order to better target key recovery.

3) Observations on SCARE: Even if this method is not
clearly aiming code recovery, it manages to understand and
highlight some implementation particularities depending on
the system monitored.

Also it mixes multiple methods, from the statistical one
to simple observations, and insists on the fact that observing
the power consumption by clock cycle can provide priceless
informations on the targeted system. Finally, this attack
clearly proves that sensitive data stored in memories are not
safe against reverse-engineering method.

B. Reverse Engineering of Embedded Software Using Syn-
tactic Pattern Recognition

This publication, compiled into "Lecture Note of Com-
puter Science" in 2010 [7], was written by Mike Fornigault,
Pierre-Yvan Liardet, Yannick Teglia, Alain Tremeau and
Frederique Robert-Inacio. This work claims that observing
precisely enough a system consumption during a code se-
quence execution, an attacker using SPA should be able
to recognize consumption pattern of a given instruction.
Therefore, the authors propose to build a statistic pattern for
each instruction and provide a dictionary to a recognition
module to reverse-engineer executed code sequences.

Their method consists in associating an instruction to
a power signature, itself composed by multiple prototypes
coming from SPA observations. A similar technique has been
presented by Dennis Vermoen, Marc F. Witteman and Georgi
Gaydadjiev in 2007, only this time aiming reverse engineer-
ing of JavaCardapplets [15]. With an efficient classification
tool, and thanks to convex form comparison, they are able
to evaluate the probability for an instruction, executed on a
CISC6 architecture, to correspond to a given power trace.

As CISC systems are specific, we will quickly remind
the architecture before presenting the different steps of this
pattern recognition based reverse-engineering method.

1) CISC Architecture: Generally opposed to RISC7 ar-
chitecture, CISC micro-processors allows multiple complex
addressing modes, and thus, provides big instruction set.
The best example for this kind of structure is the x86 Intel
family. They authorize micro-programing (i.e. instruction
redefinitions) and was meant to fill the gap between low level
and high level code design.

CISC is able to great modularity because each instruction
is a complex combination of simple statements allowing easy
ALU8 register manipulation.

Later, thanks to compilation evolutions, CISC loosed their
interest and tend to be replaced by cheaper and faster RISC
architectures. In fact, accelerating this type of processor was
an issue whereas RISC was already allowing instruction pre-
fetch process. So, because of their lack of flexibility, their
speed limits and the constraints they are no longer used for
electronic computing devices.

2) Methodology Steps: This attack consists in two main
steps. The first one characterizes the power consumption
signals for each instruction. They define the power consump-
tion P (I), corresponding to an instruction I , as a linear
combination of instruction executions and data manipulation,
for one part, and consumption linked to previous instruction
execution for the other part.

Using experimental results, they observe that signal com-
ponents linked to previous instruction are negligible. Thus,
they describe P (I) as follow :

P (I) = Poperation × εoperation + Pdata × εdata (2)

where Poperation represents the power consumption of in-
struction’s I execution, Pdata the data one and ε the associ-
ated noise to each component.

6Complex Instruction Set Computing.
7Reduced Instruction Set Computing.
8Algorithm Logical Unit.

The learning stage, following characterization, abstracts
each instruction as a combination of general atomic state-
ments. These operations can load a register value, add it,
proceed to binary operations such as "and" and "or", and
finally, multiply it to other values. Knowing the general
statements used for each instruction, an attacker should be
able to build signature prototypes characterizing a given
power trace.

This first step looks like a dictionary production. To do
so, each clock cycle in power trace corresponding to an
instruction execution is split into significants consumption
peaks like depicted on Figure 4, each instruction being
executed on R clock cycles.

Figure 4. On the left : power consumption during an instruction
execution. On the right : a clock cycle detail.

For each relevant peak composing a clock cycle, a pattern
Si is associated. The combination of all patterns defines an
instruction signature. To quantify the similarity between two
convex forms, a reference A, and a given one X , the authors
use the value pAX (X) defined as follow :

pAX (X) =
1

λX(AX)

µ(X)

µ(AX)
(3)

with AX , the smallest homothety of A contained into X ,
λX(AX) the homothetic coefficient of the smallest X ho-
mothety contained into AX , µ(X) and µ(AX) being the
respective surfaces of X and AX .

Similarity between two instructions, I1 and I2, signatures
during clock cycle k is evaluated by maximizing the previous
parameter p for each Si and finally sum these maximums like
defined on Equation (4).

M(Ck,1, Ck,2) =
∑
i

maxl(pS1,j (S2,l)) (4)

The learning steps find the best signature prototype for
each clock cycle. By monitoring several executions of an
instruction carrying various data, it obtains an average con-
sumption pattern for the targeted instruction thanks to the M
value. The prototype having the most similar signatures to the
power traces observed is selected as a clock cycle signature.
By repeating this step for each clock cycle composing an
instruction execution, the learning step provides for each
instructions a pattern stored in a dictionary.

The recovery stage simply consists in comparing a power
trace to the pattern dictionary and selecting the best similarity
score for each group of R clock cycles to retrieve the most
likely instruction executed.

3) Method analysis and remarks: Even if this reverse-
engineering method is very specific to a particular architec-
ture, it proposes an interesting scheme. It proves that CISC

systems are good candidates for pattern recognition because
of instruction granularity.

As each instruction uses the same statement set and being
able to characterize and precisely recognize these statements,
this article proposes an efficient method to recover code
sequences based on a signature discrimination. The pattern
construction step is important and finally provides all tools
needed for recognition stage. This prior work is the first one
offering a complete code reverse-engineering solution even
if it seem complicated to adapt it on other architectures.

C. Building a Side-Channel Dissassembler

This article published into "Transactions on Computational
Science" journal in 2010, was written by Thomas Eisenbarth,
Christof Paar et Björn Weghenkel. It echoes a previous work
done by Martin Goldack [8] presented as a Master Thesis in
2008. Using Chari’s "Template Attacks" [2], it suggests a sta-
tistical approach to the code recovering problem. Therefore,
its title is unequivocal and supposes that this method can be
applied on any platform types, which is a huge improvement
compared to previous works.

Before presenting the different aspects of this method, we
introduce "Template Attacks" principles and "Hidden Markov
Models" used for the system abstraction. Again, the attack
consists in two separated steps, one for characterization,
the other for instruction recognition. Side-channel statistic
analysis and platform modeling take much more importance
here than in any other prior work we treated, hence we
consider this paper the most advanced one.

1) Template Attacks: This kind of method supposes that
the attacker has an open and programmable platform identical
than the one targeted. He should be able to extract a model
from it, allowing him to proceed to code recognition on any
similar closed system.

Unlike most of statistic analysis methods trying to reduce
noise impact in order to extract information from experi-
mental observations, "Template Attacks" aim a multivariate
noise modeling for this purpose. In fact, monitoring on an
open sample lots of experimental behaviors allows a white
noise characterization whereas, for example, DPA reduces its
impact by difference.

Theoretical principals suggest a Bayesian classification
of operation set provided by a system. This classification
permits hypothesis reduction on what is really executed
by the platform. Usually, an attacker tries to maximize
resemblance between an observed sample and a theoretical
model. In "Template" approach, the better the noise model
fits, the less it needs an estimation.

This method first focuses on monitoring, for a given
operation Oi, lots of traces with variation of data carried.
Then, for each operation, it averages the curves obtained,
Mi, and looks for relevant points where average dispersion
between operations is maximal. This dimension reduction is
necessary in order to proceed complex computations only
on selected points (P1, · · · , PN) in order to make easier
operation discrimination. Last, for each Oi, it builds noise
vector Bi(T) = (|T (Pi)−Mi|)i∈[1···n], for each sample T .
With covariance matrix, ΣBi [u, v] = cov(Bi(Pu), Bi(Pv))
and mean vector Mi, the method suggests a template for Oi
operation thanks to the tuple (Mi,ΣBi).

Then, the attack considers that the signal emitted by the
system during Oi execution is Mi, and that the probability to
have a noise vector n is given by a multinormal distribution
detailed in Equation (5).

PrNi(n) =
exp(− 1

2

t
nΣ−1

Bi
n)√

(2π)N |ΣBi |
(5)

To select the best operation due to a certain observations,
the method reduces hypotheses by maximizing this probabil-
ity of noise apparition while minimizing the cumulated error
of rejected operations. In fact, as noise characterization fol-
lows statistic laws, and its possibility to quantify error while
comparing operations, reducing hypothesis allows an attacker
to associate an operation to a certain error probability. There,
to clearly identify an operation against a given power trace,
he should select the one with the least error probability value.

2) Hidden Markov Models: Mostly used in automatic
treatment for language and pattern recognition, these tools
are meant to statistically model hidden-state machines. The
following game is usually taken as an example to explain
Markov models.

Lets have two bags, A and B, each containing a certain
quantity of tokens a and b. Considering two other bags, A′

and B′ each containing a certain quantity of tokens j and
k. The game start with bags A and A′. We take one token
to each one and write down the value of the one coming
from A′. Before putting back each token in its origin bag,
we look at the one coming from bag A. If its value is a, the
next draws will still be done from bags A and A′, otherwise,
for a b value, from bags B and B′.

Two sequences can be extracted from this game. The first
one will be an information emission (writing down the token
value), the second one will be considered as a transition. This
procedure is illustrated by Figure 5.

Figure 5. A two states Hidden Markov Model example.

This abstraction of an information system seems relevant
as any platform executing an instruction, i.e. switching from
one state to another, can produce side-channel signals.

3) Presentation of the Disassembling Method: Like pre-
vious work, this one suggests two main steps for its reverse-
engineering process. First a learning stage, where each in-
struction is associated to a template. Then a recovery step
using a Markov scheme.

The profiling step builds a template for each instruction as
defined earlier, independently from the data manipulated by
the instruction. Thanks to the estimation of the instructions
related power consumption distribution, the method builds
a Bayesian classification using a theoretical multinormal
distribution. Therefore, the probability Pr(x|µk, Sk), for a
signal sample x, to belong to a given class Ck is defined
by Equation (5). To build a template, the method defines the
noise vector n = x− µk, the average vector µk of Ck, and
its covariance matrix Sk.

Now, lets have an observation corresponding to the execu-
tion of an instruction, which is independent from the samples
used before to statistically build the Bayesian classes. Its
belonging to one of these last corresponds to a maximization
of the probability Pr(µk, Sk|x), ∀(µk, Sk). Because we
need to be able to invert the Sk matrix during classes
distribution estimation, the authors proceed to reduce the
signals size while maximizing the variance. To do so, they
use two similar methods : Principal Component Analysis and
Fisher’s Linear Discriminant in order to select relevant points
in signals like the strict application of "Template Attacks" say
so.

As Pr(µk, Sk|x) = Pr(x|µk, Sk) × Pr(µk, Sk), with
Pr(µk, Sk) being the occurrence probability in a code
sample of a given instruction which template is (µk, Sk), and
because Hidden Markov Models needs transition probability
between each states, we need to study occurrences of both
single and pair of instructions. This step is performed by
analyzing various public code samples plus some specific
implementations of encryption algorithms the authors pro-
vide. Once these language grammar information extracted,
the Markov Model can be initialized and the belonging
probability is computed.

The code sequence recovery consists in parsing the
Markov state machine while testing, for each transition,
which synthetic signal emitted better fits the actual one.
Thanks to the parsing algorithms of Viterbi and "Foward-
Backward", an attacker can use its model to retrieve the
instructions executed.

The first algorithm tries to maximize the probability of a
path in Markov Model by focusing only, for each recursive
depth, on the emission compatibility before transitions prob-
abilities. However, during the recursive backtrack, it takes
into account the transition to correct errors that could have
made by template comparison.

The second algorithm, does the opposite by first looking
for the most likely path into the state machine only consid-
ering transitions probabilities. Once done, it uses template
comparison to clearly choose the best way to parse the model
until a solution pop out.

To the authors, the best solution seems to be the Viterbi
one because of its results and low complexity compared to
the "Foward-Backward" one.

4) Article Overview: First we wanted to highlight the
fact that this article was the last one published in this
domain. Its use of "Template Attack" is quite a smart solution
to the instructions’ identification problem. Also, its system
abstraction using Markov models fits well the actual behavior
of an executing platform. However, despite of the results
they obtained, these mechanisms are both dependent to the
statistical grammar information extracted from code sample
analysis.

The probability for a given template to correspond to one
instruction needs all instructions occurrences to be computed.
Then, the Hidden Markov Model requires transition proba-
bility between instructions’ pairs to be initialized. These two
information could be biased and should be used carefully.
Even if we consider that using them could bring some
application issues, the overall method is well described and
is, for now, the best analytic method existing to answer code
sequences reverse-engineering using side-channel analysis

problems.

IV. CONCLUSION

We have presented here the state of art in reverse engi-
neering code for devices in which the code is not accessible.
In fact all these works represent the first step of reverse
engineering which consists mainly in retrieving high level
information from a binary code. We have shown that this
step was possible even in the absence of binary code using
side channel information. The most difficult operation is the
instruction recognition using only the consumption traces.
We are currently improving these methods using a novel
approach based on genetic algorithms for classification. This
approach is a multi criteria optimization problem and such
algorithms seem in a first attempt to provide good recognition
score lowering false positives. Therefore, this state of art
was mandatory to overlook the different approaches already
available for this purpose to yet develop our own. As these
methods are each specific, being able to synthesize them also
helps us on our current work.

REFERENCES

[1] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis
with a Leakage Model. In M. Joye and J.-J. Quisquater, editors,
CHES, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

[2] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In
B. S. K. Jr., Çetin Kaya Koç, and C. Paar, editors, CHES,
volume 2523 of Lecture Notes in Computer Science, pages 13–
28. Springer, 2002.

[3] C. Clavier. An Improved SCARE Cryptanalysis Against a
Secret A3/A8 GSM Algorithm. In P. D. McDaniel and
S. K. Gupta, editors, ICISS, volume 4812 of Lecture Notes
in Computer Science, pages 143–155. Springer, 2007.

[4] R. Daudigny, H. Ledig, F. Muller, and F. Valette. SCARE of the
DES. In J. Ioannidis, A. D. Keromytis, and M. Yung, editors,
ACNS, volume 3531 of Lecture Notes in Computer Science,
pages 393–406, 2005.

[5] J. Di-Battista, J.-C. Courrège, B. Rouzeyre, L. Torres, and
P. Perdu. When Failure Analysis Meets Side-Channel Attacks.
In S. Mangard and F.-X. Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 188–202.
Springer, 2010.

[6] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic
Analysis: Concrete Results. In Çetin Kaya Koç, D. Naccache,
and C. Paar, editors, CHES, volume 2162 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

[7] M. L. Gavrilova, C. J. K. Tan, and E. D. Moreno, editors.
Transactions on Computational Science X - Special Issue on
Security in Computing, Part I, volume 6340 of Lecture Notes
in Computer Science. Springer, 2010.

[8] M. Goldack, C. Paar, and T. Eisenbarth. Side-Channel Based
Reverse Engineering For Microcontrollers. Master’s thesis,
Ruhr University Bochum, 2008.

[9] H. Huang, G. Quan, and J. Fan. Leakage temperature depen-
dency modeling in system level analysis. In ISQED, pages
447–452. IEEE, 2010.

[10] P. C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In N. Koblitz, editor,
CRYPTO, volume 1109 of Lecture Notes in Computer Science,
pages 104–113. Springer, 1996.

[11] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis.
In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999.

[12] M. Meterelliyoz, J. P. Kulkarni, and K. Roy. Analysis of
sram and edram cache memories under spatial temperature
variations. IEEE Trans. on CAD of Integrated Circuits and
Systems, 29(1):2–13, 2010.

[13] O. Meynard, D. Réal, S. Guilley, F. Flament, J.-L. Danger,
and F. Valette. Characterization of the Electromagnetic Side
Channel in Frequency Domain. In X. Lai, M. Yung, and D. Lin,
editors, Inscrypt, volume 6584 of Lecture Notes in Computer
Science, pages 471–486. Springer, 2010.

[14] J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In
I. Attali and T. P. Jensen, editors, E-smart, volume 2140 of
Lecture Notes in Computer Science, pages 200–210. Springer,
2001.

[15] D. Vermoen, M. F. Witteman, and G. Gaydadjiev. Reverse
Engineering Java Card Applets Using Power Analysis. In
D. Sauveron, C. Markantonakis, A. Bilas, and J.-J. Quisquater,
editors, WISTP, volume 4462 of Lecture Notes in Computer
Science, pages 138–149. Springer, 2007.

[16] J. Viraraghavan, B. Amrutur, and V. Visvanathan. Voltage and
temperature aware statistical leakage analysis framework using
artificial neural networks. IEEE Trans. on CAD of Integrated
Circuits and Systems, 29(7):1056–1069, 2010.

	Introduction
	Instructions Recovery Problem and Side-Channel Analysis
	Why Recovering Instructions Sequences?
	Side-Channel Analysis and Emission Sources

	Reverse-Engineering of Instruction Sequences
	SCARE of the DES
	Data Encryption Standard Scheme and History
	SCARE Principles
	Observations on SCARE

	Reverse Engineering of Embedded Software Using Syntactic Pattern Recognition
	CISC Architecture
	Methodology Steps
	Method analysis and remarks

	Building a Side-Channel Dissassembler
	Template Attacks
	Hidden Markov Models
	Presentation of the Disassembling Method
	Article Overview

	Conclusion
	References

