B e s i el
, 78

Convergence OSGi-JavaCard : Fine-grained

de Limoges

o

Université]

T e-smart &

dynamic update

Agnés C. Noubissi, Julien Iguchi-Cartigny, Jean-Louis Lanet

Department of Computer Sciences, XLIM Labs, University of Limoges

23/09/2010

1/27

@ Motivation

© Approach

© Off & On Card

O 0sGi

© Conclusion

2/27

Motivation
[o]

Dynamic Software Update

What is it?
Update either applications or system components while

running without restarting the system or stopping the
application.

Goals

@ Fix bugs or correct some vulnerabilities,

@ Improve perfomances by adding, deleting or
modifying some functionnalities,

@ Increase system security.

3/27

Motivation
o]]

Case Study

Application fields ...

© Contact cards
@ Sim cards (infinite lifespan),
o Bank cards (two years)

@ Contactless cards

o Electronic passports (five years, renewable),
=- Dynamically update system components
while passing through the reader terminal.

4/27

Motivation
L]

Traditional update vs HotSwUp

©

Traditional update : stop, apply update and restart,

©

Loss of the system state = Loss of execution contexts,

©

Stopping services offer and associated services.

HotSwUp : apply update while running

©

Don't stopping any application or any system
component = Don’t stop services offer

5/27

Motivation
[]

Concerning Java Card

Java Card
@ Post-issuance = Ability to update applications,

@ But for system components = creation of a new card.

Java Card Virtual Machine never stops = Need of dynamic
update of APl components (cryptographic algorithms)

Limitations of HotSwUp technics for smart cards

@ Implemented and tested for servers and desktops,

@ Resource and security constraints of smart cards.

6/27

Approach
[]

Our solution

@ Reduce download overhead,

@ Reduce memory footprints,
@ Reduce energy consumption,

@ And ensure security.

©

Extends the existing Java Virtual Machine (JVM),
EmbedDSU = A JVM with HotSwUp mechanism,

Solution based on off-card and on-card mechanisms.

©

©

7/27

Approach
L]

General workflow approach

: 2
w o
% Mapper g o Off-Card : prepare update,
= [T
= o .
5 © @ On-Card : effective update of
I com ponents.
:‘; ______
I
: -§ Diff Interpreter °
<
E DIFF S
5 :
= 2 | °©
I O updateAppCard
! Modifieg JCVM =z T
B & wrapper | [Sy
| S Instrospection I
[Updater, Roll-back : Patcher Roll-backer| -g
: g SafeUpdatePointDetector, I I
& - =
1 & ' °
1

8/27

Off & On Card
[]

Off-Card : prepare the update

Off-card process

@ Conception of a Domain Specific
Language (DSL) used to express changes
beetween class files (DIFF),

@ Implementation of the DIFF generator.

Old version| New version|

Update
Tool preparation

DIFF generator

@ Input : Two class files,

@ Output : Express changes into a dedicated
language,

@ Goal : Restrict update process to those
parts of the program that are affected by
modifications.

9/27

Off & On Card
[]

On-Card : download into the Card

Process

OxDIFF<class BankCard>
Method {
name : debit Smart Card
instr : -
del % iconst_1 2;
iload_1 3; istore_2 4;
}end_meth
Field {
add% aux 1; e 3;
del% j 2;
}end_field
}

W
Server

10/27

Off & On Card

[Jelele]e]

On-Card : update process

Process based on JVM modification

Diff Generator
Mapper

@ JVM modification

5 e JVM instrospection,

On the server
OFF CARD

! @ Detection of Safe Update Point.

W;‘% I @ Wrapper Module implementation
I-,% : o Authentication,

i i o DIFF Interpreter.

Il a 1

[1155 U \ W {

o Updater Module implementation

Modifigd JCVM

)

ON CARD

. o Update class byte code,
Instrospection " . .
Updater, Roll-back | o Update class objects in the JVM heap,
pafeUpdatcPoint Detectof s Update frames in the JVM stack.

fSystem Layer

11/27

Off & On Card
Oe000

Run through the JVM

it 1

: Java Stack tack thread PC, SP : : Java Stack Heap VM :
: B Frame2.3 prec, next : : e :
L N el [t L] @ |
V| Referenceable |- Frame2.1 table " |! 1| Reference table gy |
E thread table I\ stack thread Arguments ; E Thread table e - E
1 | Cache string constant Framel.2 E 1| Cache string constant !
E Static field appli. Framel 1 E E Static fields appli. E
' ' '
' e Call a method --> Create a frame E 0 Wt e NewAQ --> Instance A L creation

Modification of JVM = EmbedDSU

@ To interpret DIFF,
@ To introspect heap, stack frame,

@ To update data instances, frames and byte code of updated
class.

12/27

Off & On Card
[e]e] lele)

Update process overview

Global view on update proc

th3
C.ml
. B.m3| &
Old version OxDIFF<class A> Am2la
method {
lassA name : m2
instr :
del % iconst_1 2; aQ
iload_1 3; i 3
istore_2 4, i T
p—T2 lend_meth
lassA' field {
add% aux 1; e 3; D
del% j 2; —)
New version en
lend_field S
g
*
S
o
<
Update process overview

When can we apply the update process ?
= Detects the safe update point ...

13/27

Off & On Card
[ee]e] le)

On-Card update process : Safe Update Point

Goals

@ Update must be atomic,
@ Update must happen at point call safe point,

@ To ensure coherence of execution context after update.

How to detect it?

@ Obtain all methods changed by the update (signature,
bytecode, local variables, etc),

@ Check if one of those methods are in the stack frame,

o If yes, then delay the update.

14/27

Off & On Card

[e]e]ele]]

Dynamic Update Process ...

The proposed solution for JavaCard

@ Works properly,

@ Test on an evaluation board (AT91 EB40A) which
caracteristics is near to JavaCard classic target,

@ Metrics are presented in another paper.

OSGi seems to be an other perfect target for adapting that
solution.

15/27

What about DSU in OSGi?

A
@ Presentation of OSGi,

@ What does an OSGi module looks like?

@ DSU in the context of OSGi : Process,
advantages and weaknesses,

@ Proposed solution : Architecture, and process

16/27

Presentation of OSGi

The Open Services Gateway
Initiative is a programming model
to develop Java Applications from

0 i uses Service B
modular units called Bundles SenveA SR
- - <] o | ServiceC
9 \ Q 1 /
. . hel \ he} 1 /
OSGi : Two pieces 5 sl 2.
. & \ ol /
@ OSGi Framework = For) !
deploying and execution Service Registry | -

service-oriented applications 0SGi Framework

@ And service interfaces : set
of standard service (bundle)
definitions which can run on
the framework.

Java Virtual Machine

o

17/27

What does an OSGi module look like?

OSGi Bundle : A JAR file

Q It is a set of classes,

© With a special file called
MANIFEST.MF containing
metadata informations like
@ Name of the bundle
@ version,
s list of imports and exports
(services),
@ Minimum Java version
that the bundle needs to
run on, etc.

OSGi Bundle Lifecycle

uninstall

Installed Starting
T

Active

SO stop

——4 Uninstalled " Stopping

——> Explicit transition
————— > Implicit/Automatic transition

18/27

DSU in the context of OSGi

Bunlde Update Process

@ De-activate the old version of the
bundle :

]

¢ € ¢ ¢

Remove listeners,

Unregister exported services,
Remove the service objects,
Release the bounded service,
Release all resources used by the
bundle objects.

@ Load and install the new bundle,

@ And activate the new one.

0OSGi Dynamic Update

]

]

Apply at bundle level,

Don’t stop the OSGi
Framework,

Don't stop the Virtual
machine,

But stop the bundle
itself.

19/27

DSU process on OSGi : Simplistic?

@ Component bundles can be added and updated at
runtime,

@ Powerful event mechanisms are supported by the
framework.

Weaknesses

@ Update process of bundle
o Deactivates of the bundle to be updated,
o Loads of the corresponding new classes,
@ And calls of the start method

@ Loss the state of the bundle component when it is
updated = Stops the running associated objects and
release the resources it holds after installed the new
version.

20/27

Proposed solution

Goals

@ Don't destroy the execution state of the bundle during
update = Existing instances continue to be running
during the update process,

@ Dynamic update at the level of the bundle component
that include the execution state transfer of the old
version to obtain the new version ones.

Approach

JVM-Based approach = Modify the virtual machine in order
to introspect the OSGi Framework and virtual machine data
structures to offer dynamic update at the class and bundle
level without loss the execution state.

21/27

Proposed solution : Architecture

/ | Diff Interpreter \

Bundle A
c H | Safe Update Poin
S |R°" Rach l—{ Patcher] | Dedecten 1'
o} update
%\\ preparation tool :
_anifest.MF s Diff Generator ;
o 0SGi State JVM State
"/ transfer transfer
e
Bundle A' - Bundle }— Objects
5 File c Heap S
F o P g Stack 3
> i 2
e e & :
Manifest.MP (g WERELIYLSS Related Others VM
Bundles Data Struct
Others OSGi

Data struct

N

Figure: Proposed DSU Architecture

22/27

Proposed solution : Update Process (1)

The proposed Update Module : Two parts
© The first part

@ is encapsulated as an OSGi Bundle,

o registers the update service to the OSGi Framework,

o and should be started before the others bundles except
the system bundle.

© The second part is link to the modification of the VM in
order to offer some features like

Safe Update Point detector,

Introspection of the VM and OSGi data structures,

Roll-back when detects non-atomicity of the update,

And VM state transfer.

¢ € ¢ ¢

23/27

Proposed solution : Update Process (2)

Proposed Update process : First phase

@ Preparation of the Update (Diff Generator),

@ Interpretation of the Diff files and state transfer files and
send neccessary intructions to the patcher,

@ Detection of Safe Update Point,
@ Dispatch information by the patcher to OSGi State transfer

and JVM State transfer module,

24/27

Proposed solution : Update Process (3)

Second Phase

@ OSGi State transfer perfoms

s Architecture adaptation = Update the structure of the
application. It can be applied when new components are
added or removed, or when some interconnections are
modified.

o Interface adaptation = Modify the list of services provided
by the bundle component.

s State adaptation = Adapt the old OSGi execution context of
the bundle to obtain the new one relative to the new bundle.

@ JVM State transfer perfoms the heap objects, stack frames,
and others VM data Structures adaptations.

25/27

Conclusion

Paper Contributions
In this paper :
@ we present our update process for updating classes in
JavaCard based Smart Cards
e Diff in off-card,
s Modification of the virtual machine to interpret the Diff
and patch the old version in on-card.
@ we explain the OSGi's update process and present the
weaknesses of the process,

@ we propose a to adapt our successful solution used for
JavaCard in the context of OSGi,

@ and then, we present the architecture of our approach
apply on OSGi which is an on-going work.

26/27

Thank You for your attention !!

27/27

	Summary
	Motivation
	
	
	

	Approach
	
	

	Off & On Card
	
	
	

	OSGi
	
	
	
	
	

	Conclusion
	

