
Recognition of Sensitive Patterns to the Fault
Attack in the Java Card Application

Yahiaoui Chahrazed1, Lanet Jean-Louis2, Mezghiche Mohamed1, and Tamine
Karim2

1 LIMOSE Laboratory, University of M’hamed Bouguara Boumerdes, Algeria
yahiaoui.chehrazed@gmail.com, mohamed.mezghiche@yahoo.fr

2 XLIM Laboratory, University of Limoges, France
jean-louis.lanet@unilim.fr, karim.tamine@unilim.fr

Abstract. Fault attack represents one of the serious threat against Java
Card security. It consists in physical perturbation of chip components
that cause an unusual behavior in the execution of Java Card applica-
tions. This perturbation allows to introduce faults on Java Card appli-
cation, with the aim to reveal a secret information that are stored in the
card or grant an undesired authorization. This paper presents a method-
ology to recognize the sensitive code to the fault attack in the Java Card
applications. It is based on concept from text categorization and machine
learning.

Introduction

Nowadays, smart cards are considered small computers with limited capacity,
allowing to run applications and store sensitive and confidential information
(such as the PIN 3 and cryptographic keys) in a secure manner. Examples of
application that use smart cards are credit card, electronic passport, health
insurance card, pay tv, telephony SIM card, etc. Java Card is a kind of smart
card that embed a virtual machine (called Java Card Virtual Machine or JCVM),
which interpret application byte codes. However, smart cards have been mainly
threatened by fault attack (also known fault-injection attacks). The principle of a
fault attack is to modify the physical environment of the card in order to provoke
an abnormal behavior of the component. It can target either the processor, the
data/address bus or even the memory cells. Such physical perturbation can be
caused by various tools such as a laser beam or a glitch generator [4]. Fault
attacks have been mainly applied in the literature to the implementation of
cryptographic algorithms[8]. Nevertheless, such attacks may have an impact on
the whole software embedded on the card.

In this paper, our work focuses on the security of applications that run on
Java Card platform by analyzing the ability of an application to become hostile,
due to laser attack (fault attack with laser beam). Indeed, such attack can cause
modification in a Java Card application (also called applet) at byte code level

3 Personal Identification Number

2

to obtain an unusual behavior of the latter. Therefore, our work consists in
extracting, in a Java Card application, the sensitive patterns (vulnerable code)
that could generate mutant at the byte code level. Mutants are codes that have
been modified and not detected by the embedded countermeasures. Thus, the
idea is to reduce during the development phase the introduction of software
pattern known to generate hostile applet. The problem of dangerous patterns
recognition can be considered as a supervised classification problem, which is
the action to assign patterns to predefined classes (dangerous or not).

The supervised classification is the action to assign an object represented as
a vector of characteristics (features) to one of many prespecified classes. More
explicitly, the overall process of classification scheme based on supervised learn-
ing is divided into two subsequent phases: training and testing. The training
phase consists in classifying a set of objects (known as training set) by an ex-
pert. These labelled objects (called examples) are used to train the classifier
by an appropriate machine learning algorithm. Next, during the testing phase,
the trained classifier is tested using a test set (collection of new object that did
not appear in the training set) to check the accuracy of the classifier. Thus, it is
necessary to know the real class of the objects in the test set in order to compare
their real class with the class that was derived by the classifier.

The overall organization of the paper is as follows. After the introduction,
we present an overview on fault attack and another on text categorization from
which we inspired to classify sensitive patterns. In section 2, we describe our
proposition to classify sensitive patterns. The section 3 is devoted to the exper-
imentation. The last section is conclusion and our future work.

1 Background

1.1 Fault Attack

Faults can be induced into a chip using physical perturbations (like: a power
spike, the heat, a laser, a clock glitch, etc) in its execution environment. These
errors can generate different versions of a program (a mutant version) by chang-
ing some instructions, interpreting operands as instructions, branching to invalid
labels and so on. To prevent a fault attack to happen, we need to know what are
its effects on smart cards. References [3][12] present taxonomy of fault models in
detail. In our case, we choose the precise byte error model as the most realistic
attack model. When an attacker physically injects energy in a memory cell to
change its state and depending of the underlying technology, the memory phys-
ically takes the value 0x00 or 0xFF. If memory cells are encrypted the physical
value becomes random according to encryption algorithm. Thus, we assume that
an attacker can:

– Make a fault injection at a precise clock cycle (he can target any operation
he wants),

– Only set or reset a byte to 0x00 or to 0xFF, or change this byte to a random
value which cannot been predicted (random fault type),

– Target any memory cells (precise memory cell of a variable or register).

3

1.2 Defining a Mutant Code and Sensitive Pattern Code

To define a mutant code, we use an example presented in [6], which consists in
debit method that belongs to a wallet Java Card applet. The user PIN must be
validated prior to the debit operation. Table 1 presents the corresponding byte
code representation.

private void debit(APDU apdu) {

if (pin.isValidated()) {

// make the debit operation

}else {

ISOException.throwIt(SW_PIN_

VERIFICATION_REQUIRED);

}

}

Table 1. Byte code representation before attack

Byte Byte code representation
00 : 18 00 : aload 0
01 : 83 00 04 01 : getfield #4
04 : 8B 00 23 04 : invokevirtual #18
07 : 60 00 3B 07: ifeq 59
10 : 10 :
59 : 13 63 01 59 : sipush 25345
63 : 8D 00 0D 63 : invokestatic #13
66 : 7A 66 : return

An attacker wants to bypass the PIN test to make the debit operation. A fault
on the cell containing the conditional test byte code changes the ifeq instruction
(byte 0x60) to a nop instruction (byte 0x00). The resulting byte code is showed
in Table 2.

private void debit(APDU apdu) {

// make the debit operation

ISOException.throwIt (SW_PIN_

VERIFICATION_REQUIRED);

}

Table 2. Byte code representation after attack

Byte Byte code representation
00 : 18 00 : aload 0
01 : 83 00 04 01 : getfield #4
04 : 8B 00 23 04 : invokevirtual #18
07 : 00 07: nop
08 : 00 08: nop
09 : 3B 09: pop
10 : 10 :
59 : 13 63 01 59 : sipush 25345
63 : 8D 00 0D 63 : invokestatic #13
66 : 7A 66 : return

4

When an attack changes an opcode byte, then it may change the number of
following bytes used as operands: a shift in the instruction flow occurs which
may remain shifted until it eventually recovers its normal flow (interpreting as
an opcode, opcode of the original instruction flow after the shift of the flow
induced by an attack).

Let us consider an example [2] of an attack targeting an instruction encoded
with 3 bytes: X arg1 arg2. The first byte X contains the opcode, the two following
arg1 arg2 are operands. Let us assume that X is replaced by Y. The consequences
of this change depend on the number of bytes needed by Y:

1. X arg1 arg2 ; → Y arg1 ; arg2 if Y needs one operand byte, then arg2
is viewed as an opcode and the instruction flow is shifted (until possibly
returning to the original instruction flow).

2. X arg1 arg2 ; → Y ; arg1 arg2 if Y has no operand byte then arg1 is viewed
as an opcode. Depending on the number of bytes needed by arg1, arg2 is
then either an operand or an opcode. The instruction flow has also shifted.

3. X arg1 arg2 ;→ Y arg1 arg2 ; if Y needs two operand bytes then the whole
instruction has changed but the instruction flow has not shifted.

The sequence of instruction from the fault injected until the recovery of the
initial code is called mutant. The original code that has mutated is the sensitive
pattern code. In our example, the mutant code is the sequence of instruction
from instruction 07 to instruction 10 in table 2, and the pattern code is the
sequence of instruction from instruction 07 to instruction 10 in table 1.

1.3 Text Categorization

Text categorization TC is the task of assigning a text documents to one or more
predefined categories according to the documents’ content. We can describe the
TC process as consisting of four main phases: document representation, feature
selection, classification algorithm and evaluation of results. The first phase in TC
is to transform documents into a representation suitable for the classifier. The
most widely used document representation is Vector Space Model[9]. A text doc-
ument is represented as a vector of weighted term. This representation consists
first to define the vocabulary ,i.e. the set of all distinct terms that occur in the
training documents, and then each term in the vocabulary must be associated
with a value (weight) which denotes the importance of this term in a text and
its contribution to the semantics of document. The term may be identified either
with the words occurring in the document called bag-of-words representation, or
with a sequence of character or word called n-grams, that are extracted from a
long string in a document. Thus there are several ways of determining the weight
[1] such as Boolean weighting, Term frequency weighting (TF), Term Frequency
Inverse Document Frequency (TF-IDF) weighting etc. But the major problem
of this representation is high dimensionality of the vector space. Hence, there is
a need to reduce the size of the vector space in order to improve the accuracy of
classifiers. One of the most used technique for dimensionality reduction is feature

5

selection. The main idea of feature selection is to select a subset of the vocabu-
lary terms. To this end, feature selection attempts to remove the terms that are
considered irrelevant for classification. Various feature selection methods, such as
document frequency, information gain and X2 test (CHI) have been commonly
used for reducing dimentionality of text document representations[11]. The clas-
sification phase needs to use machine learning algorithm to build classifier such
as Naive Bayes classifier, decision tree, support vector machines and neural net-
works. The last phase in TC is to evaluate the effectiveness of a classifier, i.e.
its capability of taking the right categorization decisions. An important issue of
TC is how to measures the performance of the classifiers. Many measures have
been used, like precision and recall, error, accuracy, F-measure, Micro-averaging
and Macro-averaging etc. [1] [10]. These evaluation measures are computed by
using global contingency table shown in table 3. Let us note that:
TPi(true positives) is number of test documents correctly classified under ci;
FPi(false positives) is number of test documents incorrectly classified under ci;
FNi(false negatives) is number of ci test documents incorrectly classified as non
ci;
TNi(true negatives) is number of non ci test documents correctly classified.

Table 3. The Global Contingency Table

Category
set, C =

True class

{c1, c2, ..., c|C|} Yes No

Predicted
class

Yes TP =
∑|C|

i=1 TPi FP =
∑|C|

i=1 FPi

No FN =
∑|C|

i=1 FNi TN =
∑|C|

i=1 TNi

In this paper, we use the accuracy, False Positive rate (FPrate) of the class
ci ∈ C and False Negative rate (FNrate) of the class ci ∈ C, which are defined
as:

Accuracy =
TP + TN

TP + TN + FP + FN

FPratei =
FPi

FPi + TNi

FNratei =
FNi

TPi + FNi

2 Methods

In this study, we present a methodology for sensitive pattern classification based
on concepts from text categorization and supervised machine learning.

6

2.1 Dataset Creation

For the construction of the data set, we used an analysis tool called SmartCM
[5]. The goal of this tool is to analyze the ability of a Java Card application to
become hostile due to a laser attack. This tool uses a brute force process to gen-
erate all the mutants corresponding to a given application taking into account
the model card. The smart card model means the embedded countermeasures
(stack underflow, overflow, wrong local variable, wrong expected type etc.) and
the nature of the memories (encrypted or not) used by the smart card. To do
this, it modifies each opcode value either 0x00 or 0xFF, or from 0x00 to 0xFF
according to the kind of memory. Then it evaluate the execution of this new
code for each values of the opcode and if an embedded countermeasure detects
the deviant behavior the mutant is rejected, else it is stored as a mutant. Thus
it classifies the mutants into two categories dangerous or not, according to some
security properties. But the major problem of this tool is the high time con-
sumption especially when the card does not have countermeasures or presents
weak countermeasures. Hence, the main goal in our study is to overcome this
problem by using supervised learning techniques instead brute force process to
recognize sensitive code.

The output of SmartCM corresponds to a set of mutants (code after attack)
classified as either dangerous or not, taking into account the model of the card
used. However, to build our data set we need to classify sensitive patterns code
(the original code before attack) instead mutant code. Therefore, we modified
the smartCM tool to recover the original code of each mutant generated. Once
the patterns are recovered, they must be classified. To do this, we check for each
pattern if there is at least one dangerous mutant generated from this pattern,
so it is classified dangerous, else it is not.

Let us suppose that this classification is made while using two model cards.
However, the classification of patterns as either dangerous or not depends on
model card used. Therefore, for the generation of this data set we used a set of
Java Card application at byte code level. Each application is used to generate
the patterns classified as dangerous or not for each card model. Thus, we have
a set of patterns generated from a set of application classified as dangerous or
not dangerous for each card model. But for the same application, we have the
possibility to assign the same pattern in two different class with different model
card. For example, the same pattern is classified as dangerous in the model card
1, and not dangerous in the model card 2 because there are countermeasure
detects it. We can distinguish four possible cases.

– Pattern classified dangerous in model card 1 and dangerous in model card 2
(Dm1Dm2)

– Pattern classified dangerous in model card 1 and not dangerous in model
card 2 (Dm1NDm2)

– Pattern classified not dangerous in model card 1 and dangerous in model
card 2 (NDm1Dm2)

– Pattern classified not dangerous in model card 1 and not dangerous in model
card 2 (NDm1NDm2)

7

For this, we assume to have four classes instead of two, with the aim to include
the information concerning model card.
Our Dataset consists of a set of labelled patterns - the set of patterns together
with the respective class label (Dm1Dm2, Dm1NDm2, NDm1Dm2, NDm1NDm2).
Furthermore we split this Dataset into two subsets: the training set and test set.

2.2 Pre-processing and Pattern Representation

To classify the patterns, we had to convert them into a vectorial representation.
To do this, first we extracted the vocabulary: all distinct opcodes (op) appear in
the entire training set of patterns, disregarding operandes, V = {op1, op2, ..., op|V |}.
Later a vector of weighted opcodes terms is created for each pattern. We used
two different weight opcodes representation: boolean weighting and term fre-
quency weighting. Let us take pattern a vector of weighted opcode terms, where
pattern = {wop1

, wop2
, ..., wopi

, ..., wop|V |}. In the binary representation, wopi
is

a binary value (0-1), where the value 1 represents the presence of the opcode
opi in the pattern and its absence is represented by 0. In the term frequency
representation, wopi

is the frequency count of ith opcode opi in the pattern.

2.3 Classification

To classify the patterns, we used two naive Bayes models, Decision Trees with
binary representation (B-DT) and Decision Trees with Term Frequency repre-
sentation (TF-DT). Naive Bayes models are Multivariate Bernoulli Naive Bayes
model (MBNB) and the Multinomial Naive Bayes model (MNB). We briefly
describe the classification algorithms we used in this study.

Naive Bayes classifiers. The Naive Bayes classifier is a simple probabilistic
classifier. The basic idea in Naive Bayes classifier, to assign a document d to
one of a set of |C| predefined categories C = {c1, c2, ..., ci, ..., c|C|}, is first to
computes the posterior probability that document d belongs to each particular
class ci by the Bayes theorem as follows:

p(ci|d) =
p(d|ci) p(ci)

p(d)
(1)

and then assigns the document to the class with the highest probability value
(maximum posterior probability). Note that p(d) is constant (is the same for all
classes) and can be ignored , thus d can be classified by computing

c∗(d) = argmax
ci∈C

p(ci|d) = argmax
ci∈C

p(ci) p(d|ci) (2)

The probabilities p(ci) and p(d|ci) are estimated from a training set. The cate-
gory prior probability, p(ci), can be estimated as follows: p(ci) = Ni

N
where, Ni is the number of training documents in class ci, and N is the total

8

number of training documents.
The distribution of documents in each class, p(d|ci), cannot be estimated di-
rectly. In text classification, a document d is generally represented by a vector
of |V | terms (features), where |V | denotes the size of the vocabulary V such as
V = {t1, t2, ..., t|V |}. Naive Bayes classifier assumes that all features are inde-
pendent given the context of the class,i.e, the conditional probability of a feature
given category is assumed to be independent from the conditional probabilities of
other features given that category. This assumption simplifies the computation
by reducing (2) to

c∗(d) = argmax
ci∈C

p(d|ci)p(ci)

= argmax
ci∈C

p(t1, t2, ..., t|V ||ci)p(ci)

= argmax
ci∈C

|V |∏
j=1

p(tj |ci)p(ci) (3)

There are several Naive Bayes models. The most popular are: the multivariate
Bernoulli model (also called binary independence model) and the multinomial
models [7]. In the first model, a document is represented by a vector of binary
terms indicating which terms occur and do not occur in the document. This is
called multivariate Bernoulli model because a document vector can be regarded
as the outcome of multiple independent Bernoulli experiments. In the second
model, a document is represented by the set of term occurrences from the docu-
ment. This is called multinomial Naive Bayes model because the probability of
a document vector is given by a multinomial distribution.

Decision Trees. Decision trees are the most widely used inductive learning
methods. It is composed of three main components: nodes, branches and leaves.
Each node denotes a test on a feature, each branch descending from that node
corresponds to one of possible values for this feature and each leaf represent class
label. The decision tree is constructed during the learning phase, it is then used
to predict the classes of new examples. For the construction of the tree, decision
tree algorithms like ID3 and C4.5 [14][15], use a top-down (i.e from the root to
the leaves) recursive divide and conquer manner. The main idea is to select the
best feature that divides the training set. This feature is used as the test at the
decision node of the tree. A branch of this decision node is then created for each
possible value of this feature. According to the values of this feature, the training
set is partitioned. The same process is then repeated on each partitioned subset
of the training set by considering all the features except that already selected.
The process terminates when all the examples in current subset belongs to the
same class and then a leaf node is constituted. For the selection of the best
feature, each algorithm uses a feature selection measures such as information
gain and gain ratio. An unknown example is classified by starting at the root
node and following the tree down the branches until a leaf node representing the

9

class is reached. Each decision tree represents a rule set. These rules are of type:
if condition then conclusion. In addition to the construction and classification
phases, most decision tree algorithms include pruning. It consists in removing
some branches that are considered useless for improving the performance of the
tree in the classification, in order to avoid the problem of over-fitting.
In this study, we used J48, the Weka [13] version of the C4.5 algorithm [15].

2.4 Evaluation Measures

To evaluate the effectiveness of the classifiers, we used accuracy measure, which
is the rate of correctly predicted categories. Moreover to known how well the
classifier can recognize dangerous patterns, we used False positive rate (FPrate)
and False negative rate (FNrate). These measures are described in subsection
1.3.

3 Experimental Results

The Data set consists of 4096 patterns that contain 87 distinct opcodes. Note
that we used in this experiment ten Java card applications and two card models:
encrypted memory with all countermeasures and non encrypted memory without
any countermeasures. SmartCM tool classified these patterns into three classes:
Dm1Dm2, NDm1Dm2, NDm1NDm2 and no pattern is classified as Dm1NDm2.
Table 4 shows the number of patterns for each class. This experiment is run on
Intel Core i7 CPU 3.4 GHz with 12 GB RAM. When we compared the time
taken to classify these patterns which is about 10 hours and the training time of
the classifiers(shown in table 5), it seems that SmartCM is the most expensive.

Table 4. Documents number used for each class

Class Number of patterns
Dm1Dm2 41
NDm1Dm2 751
NDm1NDm2 3304
Total 4096

In this experimental study, we split the data set into two set, two-thirds of
the data set represent the training set, and the remaining one-third constitute
the test set. Table 5 gives the accuracy results and the training time of each
classifier.

Table 5. Classifiers accuracy performance and the training time

Classifier Accuracy(%) Training time (seconds)
MBNB 74,23 0,02
B-DT 84,56 3
MNB 63,39 0,03
TF-DT 83,99 4

10

After analyzing accuracy results, we found that classifiers with Binary rep-
resentation (MBNB and B-DT) outperformed classifiers with Term Frequency
representation (MNB and TF-DT). Thus the decision tree outperformed Naive
Bayes models. However, in our case study we are interested to the detection of
dangerous patterns. For this, it is important to indicate whether the decision
tree classifier is good at classifying the both classes: Dm1Dm2 and NDm1Dm2.
Information of this kind could not be obtained from the accuracy alone, and this
is why analyses of FPrate and FNrate results were also included. Figures 1 and 2
show the FPrate and FNrate results of each class. The FPrate is used to indicate
the proportion of not dangerous patterns (NDm1NDm2) wrongly classified as
dangerous patterns (Dm1Dm2 and NDm1Dm2). The FNrate is the most inter-
esting information to indicate the proportion of dangerous patterns (Dm1Dm2

and NDm1Dm2) wrongly classified as not dangerous patterns (NDm1NDm2).
In figure 1, we note that class NDm1NDm2 has the highest FPrate re-

sult compared with other classes (Dm1Dm2 and NDm1Dm2) for all classifiers.
This indicate that the Dm1Dm2 and NDm1Dm2 classes are highly overlapped
with NDm1NDm2 class and this means that patterns in class Dm1Dm2 and
NDm1Dm2, have been classified as NDm1NDm2 class. Thus this overlap is most
remarkable in DT which contains the highest FPrate result in class NDm1NDm2.

Fig. 1. FPrate results of each class

If we analyze the results of FNrate in figure 2, we find that the two classes
Dm1Dm2 and NDm1Dm2 have the highest FNrate values compared to class
NDm1NDm2, for all classifiers. This means that the classes Dm1Dm2 and NDm1Dm2

are poorly recognized compared to class NDm1NDm2. Thus, we note that DT
contains the highest FNrate values compared to NB for classes Dm1Dm2 and
NDm1Dm2, and the lowest value for other class. DT has well classified NDm1NDm2

class compared to NB, but NB has well classified Dm1Dm2 and NDm1Dm2

11

classes compared to DT. Since in our problem we are interested in the recogni-
tion of the dangerous classes, we can conclude that NB outperform DT. Unfor-
tunately, even the results given by NB are unsatisfactory. We note that about
45% of FNrate for Dm1Dm2 and NDm1Dm2, which is a highest value. We sug-
gest that this is due to the class imbalance problem also known imbalanced data
set in which the distribution of the classes varies (see table 4). It has received
considerable attention in areas such as machine learning and pattern recogni-
tion. There are many real-world applications that are faced with class imbalance
problem such as medical diagnosis. Typically it occurs when there are signifi-
cantly more examples from one class (majority class) relative to other classes
(minority class). The minority classes are usually the most important classes. In
such cases the classifier tends to misclassify the examples of the less represented
classes.

Fig. 2. FNrate results of each class

Conclusion

In this paper, we presented a new methodology for the recognition of danger-
ous patterns based on text categorization and machine learning techniques. We
have used DT and NB classifiers with two modes representation: Binary and
TF representation. Our goal is to determine the best term representation and
which classifier is more accurate at detecting dangerous patterns. We have used
accuracy measure to evaluate performance of the classifiers. The results of this
evaluation have shown that Binary representation is better than TF represen-
tation and DT outperform NB. Therefore we have used FPrate and FNrate

measures to indicate whether the DT classifier is more adept at classifying dan-
gerous patterns. The results have shown that NB has well recognized patterns
assigned to dangerous classes, compared to DT classifier. Unfortunately, even

12

the results given by NB are unsatisfactory. This is due to the imbalanced data
set.

Our future work will be first to do an experiment in which we investigate the
class imbalance problem and also to evaluate the opcode n-gram representation.
The Opcode n-gram is a sequence of consecutive n opcodes extracted from each
pattern in the training set. Each pattern is represented as a vector of weighted
n-gram opcode. We use the TF-IDF weighting term which is widely used in TC.
Different experiments have been done to identify the best opcode n-gram size, the
feature selection methods (frequency, information gain, mutual information and
X2 test (CHI)) and the classifiers (K-nearest neighbor, Support Vector Machines
and Neural Networks).

References

1. Aas, K., Eikvil, L.: Text categorisation: A survey. Technical report, Norwegian Com-
puting Center, 1999.

2. Berthome, P., Heydemann, K., Kauffmann-Tourkestansky, X., Lalande, J-F.: High
level model of control flow attacks for smart card functional security. Seventh In-
ternational Conference on Availability, Reliability and Security, pp. 226, 2012.

3. Blomer, J., Otto, M., Seifert, J.P.: A new CRT-RSA algorithm secure against Bell-
core attacks. In: Proceedings of the 10th ACM conference on Computer and com-
munications security, pp. 311-320, 2003.

4. Giraud, C., Thiebeauld, H.: A Survey on Fault Attacks. In: Smart Card Research
and Advanced Applications, CARDIS 2004.

5. Machemie, J-B., Mazin, C., Lanet, J-L., Cartigny, J.: SmartCM A Smart Card Fault
Injection Simulator. Information Forensics and Security (WIFS), IEEE 2011

6. Machemie, J.-B., Lanet, J.-L., Bouffard, G., Poichotte, J.-Y., Wary, J.-P.: Evaluation
of the Ability to Transform SIM Applications into Hostile Applications, CARDIS’11,
pp.1-17, Leuven, Belgium, 14-16 September 2011.

7. McCallum, A., Nigam, K.: A Comparison of Event Models for Naive Bayes Text
Classification. AAAI/ ICML-98 Workshop on Learning for Text Categorization,
1998.

8. Moulin, H., Bihame, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryp-
tosystem. In: Advances in Cryptology. CRYPTO’97, pp. 513-525, Springer 1997.

9. Salton, G., Wang, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.
Communications of the ACM, Vol. 18, pp. 613 -620, 1975.

10. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys, pp.1-47, 2002.

11. Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Cat-
egorization. In: Proceedings of ICML-97, 14th International Conference on Machine
Learning, pp. 412-420, Morgan Kaufmann, San Francisco, US, 1997.

12. Wagner, D.: Cryptanalysis of a provably secure CRT-RSA algorithm. In: Proceed-
ings of the 11th ACM conference on Computer and communications security. pp.
92-97, ACM New York, 2004.

13. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. 2nd edn. Morgan Kaufmann Publishers, Inc., San Francisco, 2005.

14. Quinlan, J. R.: Induction of decision trees. Machine Learning, 1986.
15. Quinlan, J. R.: C4.5: Programs for machine learning. Morgan Kaufmann Publish-

ers, 1993.

