
SmartCM A Smart Card Fault Injection Simulator
Jean-Baptiste Machemie, Clement Mazin, Jean-Louis Lanet, Julien Cartigny

SSD - XLIM Labs, University of Limoges,
83 rue d’Isle, 87000 Limoges, France,

{jean-baptiste.machemie, clement.mazin, jean-louis.lanet, julien.cartigny}@xlim.fr

Abstract—Smart card are often the target of software or
hardware attacks. The most recent attack is based on fault
injection which modifies the behavior of the application. We
propose an evaluation of the effect of the propagation and the
generation of hostile application inside the card. We designed
several countermeasures and models of smart cards. Then we
evaluate the ability of these countermeasures to detect the faults,
and the latency of the detection. In a second step we evaluate
the mutant with respect to security properties in order to focus
only on the dangerous mutants.

I. INTRODUCTION

Smart cards are devices prone to attacks in order to gain
access to services or assets stored by the card. Several means
have been used to retrieve these valuable information and
recently fault injection appears to be the most efficient. Thus
smart card manufacturers try to design countermeasures to
embed in their operating system to prevent such attacks. Often
solutions are based on dedicated code at the applicative level.
We try here to evaluate the effect of a fault on smart card
program in order to design efficient countermeasures. For
that purpose we have developed our software fault injection
simulator SmartCM.

Software fault injection is the process of evaluating software
under anomalous circumstances involving external inputs or
internal system state. It is often used to assess the correctness
of a system design. Software fault injection tries to measure
the degree of confidence that one can have in a given system
by evaluating what could happen when faults are activated.
Traditionally, the software-based fault injection involves the
modification of the software execution on the system under
analysis in order to provide the capability to modify the system
state according to the programmer model view of the system.
All sorts of faults may be injected, from the register, flags,
and memory faults.

SmartCM modifies the EEPROM memory where the appli-
cation is stored according to a fault model, examines the effect
on the program and if the detection mechanisms embedded
in the card are not able to discover the modification it saves
the mutant application. Later, all the mutant applications are
checked to decide if the mutation is dangerous or not.

The reminder of the paper is organized as follow. Section 2
presents an overview of the smart card attacks and defenses.
Section 3 discusses SmartCM, an automated tool that we have
developed to evaluate the fault propagation. Section 4 presents

the experimental evaluation of SmartCM on industrial cases
studies. Section 5 introduces our future developments and then
we conclude.

II. BACKGROUND

A. Smart Card Attacks

Smart cards are objects commonly used in our daily life
providing some computing capabilities and security features
in a very small device. Examples of applications using smart
cards are banking applications, electronic passport, health
insurance card, pay TV, SIM card, etc. Therefore, they contain
some sensitive information which must be protected against
fraud. Since the beginnings, smart cards have suffered many
hardware and software attacks in order to gain access to their
assets.

Boneh, DeMillo and Lipton have proposed in [5] a new
attack model against smart card which they called cryptanal-
ysis in presence of hardware fault. This attack model initially
focused on several public-key cryptographic algorithms like
the RSA signature scheme and the Fiat-Shamir and Shnorr
authentication schemes. It has been shown in [3] by Bihan
and Shamir that DES is also vulnerable to these attacks. This
has led to numerous forms of hardware attacks against smart
cards using fault injection [14], [2].

Faults can be induced into the chip by the perturbation of its
execution environment. Consequences of fault attacks can be
perturbation of the chip registers (e.g., the program counter, the
stack pointer,...), or the writable memories (variables and code
modifications). These perturbations can have various effects,
and in particular, they can allow an attacker to gain illegally
access to data or services if not detected. In the literature,
we can find different manners to produce fault attacks but
currently laser beam attack is the most difficult to tackle with.

B. Fault Model

To prevent a fault attack, we need to know its impact on the
smart card. Fault models have already been discussed in details
[4], [15]. We describe in the table I the different fault models
in descending order in terms of attacker power. In this paper,
we consider that an attacker can change one byte at a time
i.e.: the precise byte error fault model. Sergei Skorobatov and
Ross Anderson discussed in [12] an attack using the precise
bit error model. But it is not realistic on current smart cards,
because modern components implement hardware security on

Table I: Existing Fault Model

Fault Model Precision Location Timing Fault Type Difficulty
Precise bit error bit total control total control bsr ++

Precise byte error byte total control total control bsr, random +
Unknown byte error byte loose control total control bsr, random -

Unknown error variable no control no control random –

memories like error correction and detection code or memory
encryption.

The process is the following, an attacker physically injects
energy in a memory cell to change its state. Thus and up to
the underlying technology, the memory physically takes the
value 0x00 or 0xFF. If memories are encrypted, the physical
value becomes a random value (more precisely a value which
depends on the data, the address and an encryption key). Then
the attacker observes the effect of the fault characterized in
terms of temporal and spatial parameters. If the result did not
provide him any valuable information he restarts the process.
This scenario validated with our industrial partner helps us to
select the fault model: we choose the precise byte error. Thus,
we assume that an attacker can:

• inject a fault at a precise clock cycle (he can target any
operation he wants),

• only set or reset a byte to 0x00 or 0xFF up to the
underlying technology (bsr1 fault type), or he can change
this byte to a random value beyond his control (random
fault type),

• target any memory cell he wishes (he can target a specific
variable or register).

After defining the fault hypotheses we focus on the effect of
the fault on a specific memory: the EEPROM. The system code
is stored in ROM, it can suffer from a fault attack while the
code is executed by the processor but this remains a transient
fault which is more difficult to exploit for the attacker. At the
opposite, the permanent error is the most valuable. This can
occur when attacking the applicative code stored in EEPROM.
But some recent smart cards have also system code stored in
FLASH memory which may be subject to permanent error too.
In both situations, modifying the code stored can change the
behavior of the application leading to a potential aggressive
application. Such a modified application, not detected by the
embedded countermeasures is defined as a mutant.

C. Detection Mechanisms

There exists two different types of countermeasures against
fault attack. The hardware countermeasures [1] which harden
the ability to modify on-card programs and program flows.
The software countermeasures in which software may check
for faults or to ensure that no valuable information can be
learned from injecting faults.

Hardware countermeasures include those which can be
implemented by the industry to provide tamper resistant chips.
In this category we can cite passive protections to increase the

1bit set or reset

difficulty to succeed an attack (like random dummy cycles,
bus and memory encryption, unstable internal frequency gen-
erators, etc.) and active protections that contain mechanisms
checking whether tampering occurs and take countermeasures
(generally the family of detectors like light detectors, supply
voltage detectors, frequency detectors, etc). But those counter-
measures are not dedicated to fault attacks and their detection
ability is low. Currently software countermeasures are the most
efficient solution.

Software countermeasures can be classified by their type.
• Cryptographic algorithm countermeasures which focus

on the implementation of specific cryptographic algo-
rithm and often provide better implementations of the
cryptographic algorithms like RSA (which is the most
frequently used public key algorithm in smart cards),
DES, and hash functions (MD5, SHA-1, etc.).

• Applicative countermeasures; It is possible to implement
at the application level several checks to ensure that the
program always executes a valid sequence of code on
valid data. It includes double condition checks, redun-
dant execution, counter etc. and are well known by the
developers. Unfortunately this kind of countermeasures
increase drastically the program size. Because beside
the functional code, it needs security code and the data
structure for enforcing the security mechanism embedded
in the application. Furthermore Java is an interpreted
language therefore its execution is slower than with a
native language, so this category of countermeasures
suffers from bad execution time and add complexity for
the developer.

• System countermeasures where protections are integrated
directly at the system level. The main advantage is
that the system and the protections are stored in the
ROM memory, which is a less critical resource than the
EEPROM and cannot be attacked. Thus, it is easier to
deal with integration of the security data structures and
code in the system. But often the design of an embed-
ded Java Virtual Machine (JVM) relies on an offensive
interpretation with a few system countermeasures and a
robust Byte Code Verifier (BCV) that checks during load
time the application.

Nevertheless all these countermeasures need to be evaluated
in terms of efficiency, ability to detect a fault and cost: size
of the memory footprint and execution time overhead.

D. Driving the Execution Mode on the JVM by the Application

In a previous paper [10], we have proposed a solution using
a security feature available in Java Card 3.0 platform: the

annotations. But this approach is also fully applicable to Java
Card 2.x platform using the custom component facility [13].
The idea is to drive the execution mode of the JVM by the
application. The developer knows the semantics of its applica-
tion and then can choose the best embedded countermeasure
for each fragment of its code. Some of them are not sensitive
while others need to be executed in the most secure mode.
It is then possible to adjust the memories and CPU overhead
to the optimum and reduce code in the application dedicated
to countermeasure. The process is executed in two phases:
outside the card we generate the annotations and in the card
we change the execution mode according to the annotations.
For example, the @SensitiveType annotation denotes that the
whole method must be checked for integrity with the check
paths mechanism.

@SensitiveType{
sensitivity= SensitiveValue.INTEGRITY,
proprietaryValue="PATHCHECK"
}
private void debit(APDU apdu) {

if (pin.isValidated()) {
// make the debit operation

} else {
ISOException.throwIt(

SW_PIN_VERIFICATION_REQUIRED);
}

}

For the off card part, we provide a tool that processes an an-
notated class file. It allows the use of several countermeasures
like those defined in [11] (i.e., Check paths, Basic Blocks, etc.)
on methods or on byte code fragments. Then the file is securely
loaded inside the card using the Global Platform protocol [8].
Java based smart cards can process custom components if it
knows how to use them or else, silently ignores them. Of
course to process the information contained in these custom
components, the virtual machine must be adapted, for that
purpose we have designed our own JVM. The virtual machine
interprets the application code and while entering a method
or class tagged with a security annotation, it switches to the
required secure mode. This approach is compatible with non
modified virtual machine.

With this mechanism, an attacker must simultaneously inject
two faults at the same time on two different memory areas,
one on the application code and the other on the system during
the interpretation of the code. A dual fault is outside the scope
of the chosen fault model and is not realistic according to the
literature.

III. TOOL ARCHITECTURE

The simulation tool SmartCM aims at analyzing the effect
of a fault on a Java Card program. Three different programs
are used in this analysis. The first one is the mutation engine
which takes as input a model of the card and the applicative
program at the byte code level. It emulates the effect of the
fault on the program according to a fault model and generates

the mutant code. The mutant code is symbolically interpreted
by the card and if an embedded countermeasure detects the
deviant behavior the mutant is rejected, else it is stored as a
mutant. The second tool is a risk analysis tool. If a mutant
is generated we need to evaluate the impact of its behavior
to decide if it is a hostile behavior or not. Then a last tool
which is under development aims to integrate code into the
application in order to reduce the number of mutants. We
expect also to add (see future works) a module to recognize
sensitive patterns during the development in order to provide
a complete framework.

A. Smart Card Model

The smart card model integrates well known software
countermeasures and specific ones developed in a previous
thesis. It models also the nature of the memories used by the
smart card. If the given smart card used an encrypted memory
then the effect of a fault on the memory will be a random byte
according to encryption algorithm. The second entry is a set
of class files of the program. The user can choose a profile
corresponding to registered smart cards.

B. Mutation Engine

The mutation engine is a brute force process which modifies
the memory where the byte code is stored. The effect of the
fault on the program is evaluated with an abstract interpreter
that includes the management of the Java annotations. If the
byte that has been impacted by the fault is an opcode, then
according to the kind of memory (encrypted or not) the value
of the new opcode is either 0x00 or 0xFF or any value in this
range. Then the mutation engine uses the smart card model to
evaluate the execution of this new code for each values of the
opcode and propagates the error until a countermeasure detects
it (stack underflow, overflow, wrong local variable, wrong
expected type,...). If a return of the method ProcessAPDU()
(which can be considered as a main for a Java Card applet)
of the applet is reached or an exception is never caught,
then we consider that the mutant cannot be detected. We
generate a class file that corresponds to the mutant code
and the corresponding class file is stored for further analysis.
Less secure is the card, more we must interpret the code and
longer is the simulation. Parallelization is one of our current
improvement in order to be able to analyze low-end smart
card; each new code is independent from the others and then
can be analyzed concurrently on different computers.

C. Risk Analyzer

The mutation of an application can generate several mu-
tants according to the security of the platform. To help the
programmer to understand the effect of the error, it outputs
the original Java Code and the Java perspective (if possible)
of the mutant code, it highlights the area where the code has
been modified. Often the mutants are harmless but a security
officer must check all of them. In order to facilitate this task we
developed a risk analysis module that verifies a set of security
properties on the mutant and decide to tag the mutants as

Figure 1: General architecture

dangerous or not. This tool can also include the possibility to
add other security properties, to include an internal map of the
the method addresses.

A mutant can be dangerous in several cases: it accesses
objects and methods that are normally non authorized (poten-
tially call to unwanted methods : getKey()), it changes its
own internal behavior (e.g.: remove test), it performs action
on its own data in an unexpected way.

1) Method calls: The issue is when another method is
called or if one of the parameters has mutated. Methods
must be invoked with the appropriate arguments (number and
type), for that purpose we need to model the effect of the
instruction on the operand stack and local variable array and
verifies that it corresponds to the signature. If the number of
arguments are not correct in terms of types on top of the stack
a type confusion can occur inside the called method which is
forbidden. For example, an address is given instead of a short
and the short value is modified in the called method: it is
the way to perform arithmetic on addresses which leads to a
dangerous mutant. In terms of number of arguments: too few
arguments is detected thanks to a stack underflow detection (if
present in the card), too much arguments cannot be detected
locally but will be detected by the caller. Normally at the end
of a method the stack contains either zero element (return
void) or one element that has the correct type.

The address of the called method is valid but different
from the original. In fact, the linking process is done in the
card. So the code to analyze do not have the real addresses
(it contains only offset to the constant pool). According to
industrial partners, it is possible to obtain the internal mapping
of the methods (in the ROM or EEPROM area). In such a case,
it is possible to generate the mutants where the address of a
call is valid. We have to consider two cases, the arguments
are valid (number and type) and it is a dangerous mutant or
not and then it can be considered as harmless. If the mutation

concerns an address that does not correspond to the structure
of method, it will be detected by the JVM and thus it must
not be considered as dangerous.

In case of invokeInterface, invokeSpecial and
invokeVirtual, methods are invoked on another object. If the
address does not correspond to a data structure of an object, the
mutant will be detected during run-time, it is not dangerous. If
it is a concrete address of an object that do not belong to the
current security context, the mutant will be detected during
run-time, thus it is not dangerous. If it is a concrete address
of an object that belongs to the current security context, the
method will be applied on the wrong object : the static analysis
can not detect it, there is no possibility to have a dynamic map
of the objects. We apply the same rule when accessing a field.

2) Changes in the control flow or data: The mutant can
change the control flow of the method. The issue is that some
methods are not called or the result is not evaluated. We must
verify that all calls and all evaluations are performed because if
one is skipped it is a dangerous mutant. The last point concerns
the static fields or the local variables. If a local is used in an
assignment e.g. boolean testVariable = pin.isValid(),
and later this variable is used into a test, any assignment
between definition and use can lead to a dangerous mutant.

IV. INDUSTRIAL CASE STUDY

A. Applications

Several Java Card applets have been used for the evaluation.
Two SIM applets are representative of the type of code that
a MNO (Mobile Network Operator) may want to add to their
USIM Card. The first (AgentLocalisation) is oriented geolocal-
ization services, this applet is able to detect when the handset
(the device in which the USIM card is inserted) is entering or
leaving a dedicated or a list of geographical dedicated cells
(each cell is identified through a CellID value, which is stored
on the USIM interface) and then sends a notification to a

dedicated service (registered and identified in the applet). The
second (OTP) is more specialized to authentication services,
the applet is able to provide a One Time Password (OTP) to the
customer and/or an application in the handset. This OTP value
is already shared and synchronized by the applet with a central
server, which is able to check every collected OTP value using
dedicated web services. We also evaluate a protocol payment
applet designed by a major smart card manufacturer [7] and a
hostile applet specifically designed to execute shell code when
mutated [6].

B. Metrics

The collected metrics cover two different aspects: how
efficient are the countermeasures and are they affordable. One
can design very efficient code but if it does not fit the industrial
requirements it remains useless. To fulfill the first one we
need to verify their detection coverage and the latency of the
detection. The second point is related with run time execution
and memory footprint. It is widely accepted that an overhead
over 5 % is considered as a maximum. So we need in a one
hand to simulate the code (the objective of SmartCM) on the
other hand to implement it in a JVM and evaluate its run time
impact.

1) Evaluating Resources Consumption: The first category
of metrics is the memory footprint and the CPU overhead.
They have been obtained using the SimpleRTJ [9] Java virtual
machine modified to accept multiple execution modes driven
by annotations. This JVM targets highly restricted constraints
devices like smart cards. The hardware platform for the
evaluation is a board which has similar hardware as high end
smart cards.

These metrics are very important for the industry because
memories size directly impacts the production cost of a card.
In fact, applications are stored in the EEPROM which is the
most expensive component of the card. The CPU overhead is
also important because most of the time, when challenging the
card for some computation a quick answer is needed. So when
designing a countermeasure for smart cards, it is important
to have these properties in mind. To obtain the metrics in
table II, all the countermeasures have been implemented on an
embedded JVM that has similar properties as common smart
cards.

2) Evaluating Mutants Detection: To evaluate the path
check detection mechanism, we have developed an abstract
Java Card virtual machine interpreter. This abstract interpreter
is designed to follow a method call graph, and for each method
of a given Java Card applet, it simulates a Java Card method’s
frame. A frame is a memory area allocated for the operand
stack and the local variables of a given method.

The mutant generator has different smart card profiles:
• The Basic Profile (BP): the interpreter executes, without

running any checks, the instruction set. It corresponds to
low end smart cards which rely entirely on the execution
of BCV outside the card. Most smart cards corresponding
to the 2.1 standard and some of the 2.2 standard fall into
this category.

• The Defensive Profile (DP): the interpreter checks that no
overflow or no underflow occurs, that the used locals are
inside the current table of locals, and that when a jump
occurs it takes place inside the method. They consist in
some verifications done by the BCV.

• The Customized Profile: this profile corresponds to the
dynamically adjustable security of the JVM. The user
can activate different countermeasures see [10] like the
developed ones: path checking mechanism (PC), basic
bloc integrity (BB), field of bits mechanism (FB) , or
TCM mechanism. TCM is a detection mechanism that
is not described in this paper and for which a patent
is pending. For the purpose of this evaluation, we com-
pare independently each countermeasure for the whole
program. It is a pessimistic approximation because it is
applied to the whole program, while it needs to be applied
only on the sensitive methods or fragments of them.

3) Resources Consumption: Table II shows the metrics for
resources consumption obtained by applying the detection
mechanism to all the methods of our tested applications. The
increase of the application size is variable, this is due to the
number of paths that exist on a method. Even if the mechanism
is close to 10 % overhead size and 8 % of CPU overhead,
the developer can choose when to activate only for sensitive
methods to preserve resources. This countermeasure needs
small changes on the virtual machine interpreter if we refer to
the 1 % increment. So, we can conclude that it is an affordable
countermeasure.

Table II: Resources consumption for Customized Profile

Countermeasures EEPROM ROM CPU
Field of bits (FB) + 3 % + 1 % + 3 %
Basic block (BB) + 5 % +1 % + 5 %
Path check (PC) + 10 % +1 % + 8 %

Typed CM (TCM) 0 % <1 % +<1 %

4) Mutant Detection and Latency: The obtained results
show the efficiency of the developed countermeasures. The
table III shows the generated mutants in each mode of the
mutant generator for five applications. The table IV shows
the latency which can be defined as the number of instruc-
tions executed between the attack and the detection. With
the basic profile, no latency is recorded because no detec-
tion is made. This value is really important because if a
latency is too high maybe instructions that modify persis-
tent memory like: putfield, putstatic or an invoke in-
struction (invokestatic, invokevirtual, invokespecial,
invokeinterface) can be executed. If a persistent object
is modified then it is manipulated during all future sessions
between the smart card and a server. So this value has to be as
small as possible to reduce the chances of having instructions
that can modify persistent memory or send data to the reader.

Path check (PC) fails to detect mutants whenever the fault
that generates the mutant does not influence the control flow
of the code. Otherwise, when a fault occurs that alters the
control flow of the application then this countermeasure detects

Table III: Results - Mutation

BP DP CP
TCM FB BB PC

Wallet (470 inst.) 440 54 30 10 0 37
Otp (4568 inst.) 7960 464 378 40 0 1032

AgentLoc. (3504 inst.) 6486 356 343 10 0 784
Payment (1100 inst.) 2140 304 250 1266 0 2140

Hostile (825 inst.) 1622 0 50 14 0 76

Table IV: Results - Latency

BP DP CP
TCM FB BB PC

Wallet - 2,91 2,92 2,43 2,72 2,42
Otp - 3,64 3,56 8,61 12 17,18

AgentLoc. - 11,8 12,1 2,43 10,20 13,06
Payment - 5,54 6,55 0,5 - -
Hostile - - 0,77 0,71 - 0,79

it. With this countermeasure it becomes impossible to bypass
systems calls like cryptographic keys verification. Basic bloc
is the most efficient countermeasure.

5) Risk Analysis: The risk analysis tool is able to cut for the
configuration the AgentLocalisation applet using the TCM, the
343 mutants to 8 dangerous mutants which reduces drastically
the effort for manual inspection of the code. It needs only a few
seconds to execute this analysis, in the case where the internal
mapping is provided. The tool is able to classify between 90%
to 97% of the mutants into the non dangerous category.

V. FUTURE WORKS

In the next steps, we will try to improve the development
phase. We want to analyze the mutant codes, to deduce at
the Java level which structures are sensible for a given Java
Card platform. Then we will propose to generate the code
that could (or not) eliminate the mutant. For example, if the
mutant is generated thanks to a modification of the control
flow, then a double conditional can solve this issue or a
sequence counter. In some cases it is possible to generate
automatically applicative counter measures. The objective is to
pinpoint the sensitive structures, suggest a countermeasure or
a warning. The second improvement concern the development
phase, close to the previous one but using learning networks.
While coding its application the developer could we warned
that a given pattern (at the byte code level) is sensitive. Each
time an application is analyzed, we enrich the data base of
sensisitive patterns. Each sensitive pattern is associated to Java
source code, if possible.

VI. CONCLUSIONS

In this paper, we presented a simulation approach to evaluate
the impact of a fault on the program memory of a Java
based smart card. We define a platform model through a
profile then we generate all the possibilities of an error. The
collected metrics during the simulation are used to adopt a
given counter-measure: ability to detect a fault, latency of
the detection, cost in term of memory (ROM, RAM and

EEPROM), cost in term of CPU overhead. We have developed
our own countermeasures and evaluate them in this context.
The designed tool offers also the possibility to eradicate
non relevant mutants and view only those that endanger the
security of the platform. it provides the ability to read it either
at the byte code level for experts but also (if possible) at the
Java language level.

Designing counter measures takes into account the com-
pliance with previous file formats according to either the
Java Card 2.x or 3.x specifications. Our countermeasures are
affordable due to a low memory footprint. For the applet
designer, he can adjust dynamically the security level of the
JVM according to the semantics of its program. The developer
knows exactly which program fragment needs to be protected
and which can be executed without specific treatment.

With this framework, both the developer and security eval-
uator can take decisions concerning the security of the smart
card application. For the developer company, reducing the size
of the embedded code minimizes the cost of the application.
For the security evaluator it provides a semi-automatic tool to
perform vulnerability analysis.

REFERENCES

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, and
I. Rehovot. The sorcerer’s apprentice guide to fault attacks. Proceedings
of the IEEE, 94(2):370–382, 2006.

[2] G. Barbu, H. Thiebeauld, and V. Guerin. Attacks on Java Card 3.0
Combining Fault and Logical Attacks. Smart Card Research and
Advanced Application, Cardis 2010, LNCS 6035:148–163, April 2010.

[3] E. Biham and A. Shamir. Differential fault analysis of secret key
cryptosystems. Lecture Notes in Computer Science, 1294:513–525,
1997.

[4] J. Blomer, M. Otto, and J.P. Seifert. A new CRT-RSA algorithm secure
against Bellcore attacks. In Proceedings of the 10th ACM conference
on Computer and communications security, pages 311–320. ACM New
York, NY, USA, 2003.

[5] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of
checking cryptographic protocols for faults. Lecture Notes in Computer
Science, 1233:37–51, 1997.

[6] G. Bouffard, J-L. Lanet, and J. Cartigny. Combined software and
hardware attacks on the java card control flow. In Proceedings of Cardis
Tenth Smart Card Research and Advanced Application Conference,
2011.

[7] P. Girard, J-L. Lanet, A. Plateaux, and K. Villegas. A new payment
protocol over the internet. In CRISIS, International Conference on Risks
and Security of Internet and Systems, pages 51–56, 2010.

[8] Global Platform. Official web site, http://www.globalplatform.org, 2010.
[9] Simple RTJ. Official web site, http://www.rtjcom.com, 2010.

[10] A. Sere, J. Cartigny, and J-L. Lanet. Automatic detection of fault attack
and countermeasures. In Proceedings of the 4th Workshop on Embedded
Systems Security, pages 1–7. ACM, 2009.

[11] J. Sere, A. Cartigny and J-L. Lanet. A path check detection mechanism
for embedded systems. Proceedings of SecTech 2010, 6485:459–469,
2010.

[12] S.P. Skorobogatov and R.J. Anderson. Optical fault induction attacks.
Lecture notes in computer science, pages 2–12, 2003.

[13] SunMicrosystems. Java Card 3.0.1 Specification. Sun Microsystems,
2009.

[14] E. Vetillard and A. Ferrari. Combined attacks and countermeasures.
Smart Card Research and Advanced Application, Cardis 2010, LNCS
6035:133–147, April 2010.

[15] D. Wagner. Cryptanalysis of a provably secure crt-rsa algorithm. In Pro-
ceedings of the 11th ACM conference on Computer and communications
security, pages 92–97. ACM New York, NY, USA, 2004.

