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1. Introduction

In a previous paper [Lan-00] we explained that smart cards could be the ideal domain for
applying formal methods. We said that the need of formal methods has three origins:
mastering the complexity of the new operating systems, certifying at a high level a part of the
smart card and reducing the cost of the test. We believed that these reasons were enough to
introduce formal methods in the software live cycle. Unfortunately the efforts for integrating
data and behavior in a same framework for generating automatically test cases, have not yet
been successful. For the certification, the certification obtained by Multos (ITSEC EAL 6)
did not encourage the other smart card manufacturers to propose high level certification. If
certification helps to introduce formal methods it will be just as a side effect. Finally it was
the complexity of the operating systems and the need to avoid vulnerabilities that initiated the
GemClassifier smart card development.

We have demonstrated that it was technically feasible to use a given formal method but it was
not sure if it was economically acceptable. At that time we have identified some bottlenecks
that must be solved in order to allow a real acceptance by the managers:

•  development overhead,
•  lack of methodology,
•  human resistance and
•  tools improvements.

We believe that a clean methodology with related metrics and tools improvements will
consequently help the integration of formal methods and in particular the B method in the
software process. It is important to have guidelines for the specifications and proofs that help
the designers. For this purpose we joined a European project, named MATISSE1.

The approach of the MATISSE project is to exploit and enhance existing generic
methodologies and associated technologies that support the correct construction of software-
based systems.  In particular, a strong emphasis was placed on the use of the B Method.
Within this project we evaluate the advantages and the drawbacks of using formal methods in
our specific domain. For this purpose the first task was to set up an evaluation plan [Mat-01].
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2. MATISSE evaluation plan:

With this project we wanted to determine if formal methods can be used in developing
smart cards in such a way that gains in quality come at predictable and acceptable cost.
By stating this goal we defined the expected effects of using formal methods. The hypotheses
to be tested are detailed enough to make clear what measurements are needed to demonstrate
the effects. With the following aims, we define five hypotheses.

•  H1: The use of formal methods and in particular the B method improve the quality of
resulting software. It is of prime importance to demonstrate to managers that a
consequent formal development increases the quality.

•  H2: The cost overhead of a formal development is acceptable. It is expected that the
introduction of formal methods will not raise too much the costs of development. This
hypothesis asserts that different treatments have different effects on a project. To draw
some conclusions from the case study result, it is necessary to have two developments to
determine if there are some differences. The formal development in the case study must
have a sister project using the Gemplus procedure for development. The measurements
will take into account developments, proofs, reviews, tests and documentation for
traditional and formal developments.

•  H3: Non specialist engineer can use the formal method effectively when guided by an
expert. This hypothesis will point out the importance of know-how and difficulties in
using formal methods and will help in the definition of the team. It will also help the
project manager to evaluate the part of subcontracting. From the Gemplus experience, it
seems very useful to subcontract at the early phase of a project and possibly at the end for
solving complex proofs. The know-how of an external expert will be necessary until it
can be supplied by experienced practitioners within Gemplus. The second part concerns
the training of the developer for formal modeling. It is claimed that B models can be
developed by beginners. To verify that point a part of the development will be given to
trainees and a special attention will be paid to fluctuations in measurements.

•  H4: The use of formal methods and B facilitates fulfilling regulatory requirements. The
Common Criteria (CC) requires the use of formal methods from the so-called EAL5 level
and upwards. At the EAL4 level, only semi-formal documents are required, but to reach
the higher levels formal (mathematical) proofs are required and formal methods and
associated tools have to be used (e.g. for the formal description of security policies,
formal proofs of the consistency of the security policies, etc.). There are already very
professional development models that fulfil the regulatory requirements at Gemplus.
However, formal specification and in some cases even direct software code generation
from these specifications would help to improve the way of working and the productivity
as well as to prepare for future regulations. A special emphasis is put on using the B
method to meet these regulatory requirements. Even if formal methods are not required
for meeting these regulations, they would be favorable by making it easier to trace the
requirements all the way to the final code. This traceability is a very important feature,
since it facilitates the reuse of code in future developments.



•  H5: Code generated by the use of the B method does not have significantly increased
memory requirements or the execution time. We have verified in previous studies that the
produced code from the Atelier B had too large memory footprint to be usable. Moreover
we do not know whether using the B method increases the size of the code independently
of the code generator. Engineers have a great experience in generating very efficient C
code for a smart card. It will be of a great interest to compare the codes because it is often
said that constructs used in formal specification may not translate well into the target
language leading to either an inefficient implementation, or a substantial amount of re-
work to optimize the code design.

The hypotheses H1 and H2 need to have two developments of the same or similar software.
We did not have enough time to validate the hypothesis H4. The last hypothesis needed to
generate the code that fits the smart card constraints. Between the formal methods only the B
method has the possibility to generate acceptable code for smart cards. But the current code
translator was not efficient enough for the card, so we developed our own translator. It was a
prototype, and has not been validated.

3. The B method

The B Method is a formal method for software engineering developed by J.R. Abrial [Abr-
96]. It is a model oriented approach to software construction. This method is based on set
theory and first order logic and the generalized substitutions. It covers the complete
development cycle from specifications to code generation. The basic concept is the abstract
machine which is used to encapsulate data describing the state of the system. A B project can
contain several abstract machines. Invariant can be expressed on the state of the machine
which can only be accessed by the specified operations. These operations are the means to
access and modify the variables of the machine and they contain a precondition which is a
predicate that must hold when the operation is called.

The abstract machine is refined by adding specification details. Several steps can be used
before reaching the implementation level where the specification is detailed enough to
generate code. The refinements and the implementation have other invariant (gluing
invariant) which express relations between the states of the different refinements and
preserves the correctness of the abstraction. The implementation corresponds to the last
refinement and is written with a subset of the B language: the B0.

The proof process allows to check the consistency among the mathematical model, the
abstract machine and the refinements. This way, it is possible to prove that the
implementation is correct according to its specification. The tool AtelierB generates the proof
obligations of the specification according to the mathematical model. A theorem prover is
provided to automatically discharge some of the proof obligations and an interactive theorem
prover allows the user to interact in the proof process.



4. The case study

We have chosen to specify and implement a Java byte code verifier on a smart card. For the
Java card it is important that an applet can not has access to the data of other applets expect
by using the sharing mechanism, or accessing the code of the operating system. The verifier
is a key component of the Java security architecture. It examines incoming code in order to
ensure that it is valid. It checks that the code respects the syntax of the byte code language
and that it respects the language typing rules. The verifier checks statically that the control
flow and the data flow do not generate run time error. Other components are responsible for
protecting system resources from abuse but they depend on the verifier as they rely on
language features such as access restrictions (private, protected, final, etc). It is obvious to
say that a vulnerability in this component will be catastrophic for the card. We have specified
and implemented such a verifier with all the Java byte code features except the subroutine
treatment.

The two teams have not developed exactly the same software. We developed formally a PCC
based verifier [Nec-97] and the algorithm specified by SUN [Lin-96] (we call it stand alone
byte code verifier) with the standard development procedure. Both software share a common
part: type inference and byte code verification. The evaluation has been done on this part
only.

The PCC verifier

The PCC verifier scheme similar to the KVM verifier or to the Java lightweight verification
that could be used for Java Card to perform similar verification on card. The idea is to
separate the verification process in two parts as shown below. An off-card part, that computes
a certificate, or “proof” indicating that the code is correct with respect to the security policy
and an on-card part, that uses the certificate to verify the correctness of downloaded code.

The “proof” generated is similar to the StackMap attribute used by the KVM, and contains
the same kind of information. In our development, we add it in an additional component to
the CAP file (for example COMPONENT_Proof, or COMPONENT_StackMap to follow the
KVM naming convention).
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and ProofOff-card Tool



The proof is built from the CAP file and the export files that have been used to build the CAP
file and then added to it. If the CAP file is not a valid one, it is rejected and no proof is added.
As shown previously, the proof added consists in type information for specific parts of the
code (jump target). This proof will be used later by to card to perform verification of Java
Card applets when the applet is uploaded to the card, and is not needed afterwards. As this is
an off-card treatment, the generation can be a memory and computation intensive process. A
first part of the proof generation consists in classical byte code verification. Then, the proof is
extracted from the information computed during the verification. Then the on-card verifier
uses this additional information to speed up the verification algorithm which becomes linear.

Stand alone verifier
This verification algorithm was said to be a too complex operation to be performed by a
smart-card, in particular because of the time complexity, and also memory requirement. By
taking into account particularity of smart-card hardware and of the verification process, we
have found solutions.

Type unification can be optimized by stating that during verification of a Java card applet, we
perform a lot of unification between primitive types, and the results for these unification can
be statically known. We have taken this property into account by using a particular encoding
of the type lattice for Java Card. One of the major problem in smart card programming is the
fact that the E² sensitive to stress. Our encoding of typing information combined to some
interesting properties of the type inference algorithm allows us to heavily decrease the E²
stress. We have reduced the problem linked to memory consumption by using software cache
between RAM and E². We use the control graph flow of the currently verified program
combined with some interesting properties of the verification algorithm, so that we can avoid
some data transfer between RAM and E² when it is not necessary. Thus we have less E²
stress, and verification is faster.

At the end, both software have been embedded into smart card. The chip target is an ATMEL
platform, the AT90 SC 3232. This chip contains 32 kb for the program and 32 kb for the data
and 1.5 kb of scratch memory. The code is stored in the program area while downloaded
applet to be verified are stored in the data area.

5. Main results

We will not comment here the formal development process, details can be found in [Cas-02],
but we will compare the two approaches. We are currently in the process of analyzing the
collected metrics and but we can provide here some information. The two developments
started at the same time and the teams were not separated. Both of them shared the same
specification that has been written prior to the development and reviewed by another team.
The development is split in three phases:
•  the translation from informal specification to an abstract formal model. Its verification is

done by review,

•  the formal development, its validation is done by refinement and proofs,



•  the translation from a formal low level specification into an executable code, verification
is done by code review and test.

During the first phase, errors have been discovered by review done by an external reviewer.
In the formal development, reviewing may have two main advantages. The first one is to be
confident on the model before starting the proof step. As the proof step is a costly step, if
some errors can be eliminated by review, it could save time. The second advantages is to
reduce possible errors introduced during the informal to formal translation. Some errors have
been found during this step. In particular, an error has affected 12 instructions. It concerns a
bad transformation of the stack by those instructions. This error is not due to the translation
informal to formal, but finds its origin in the informal specification that has been written for
the type verifier.

The second source of errors is linked with the B development process. At each step, the proof
obligation generator generates lemmas to be proved. If it is impossible to prove them, there is
some inconsistencies, errors in the model or lack of properties. The problem is that the
automatic prover cannot prove all of them. The ratio is often around 75% of success. The
regular process is to look at the lemmas and if they seem to be true to not prove them with the
interactive prover and to postpone this phase unless the model development is complete. The
interactive proof process is done at the end. Unfortunately 29 errors have generated hundred
of unprovable lemmas that have not been immediately identified as false but have been
corrected during the development phase. We use the proof process as a powerful debugger.

Another team generated the test plan in accordance to the informal specification and
developed the test cases. The error discovered during this phase (23) had two origins. The
first one is linked with the specification process (14 errors). If an error occurs during the
translation from informal specification to formal specification the proof process is unable to
detect them. The second type of errors (9 errors) were due to bugs into the translator. At the
end of the refinement process, the final component is an implementation in a subset of the B
language the B0 which is very close to C. The translator we used was a proprietary prototype
with faults. This prototype has not be qualified according to the standard process.

Formal development Standard development procedure
Development workload 12 weeks 12 weeks
Proof workload 6 weeks NA
Test workload 1 week 3 weeks
Integration 1 week 2 weeks

Total 20 weeks 17 weeks
Bugs discovered by review 13 24
Bugs discovered by proof 29 -
Bugs discovered with tests 32 71

Total 74 95

All the bugs discovered with test where at the boundaries of the formal method: at the
beginning, the specification process and at the end, the code translation. The other bugs have
been discovered during the formal development more or less quickly. Reviewing
specification is a task that can be performed in both development. It is an important task as



many errors can be rapidly discovered. Discovering errors as soon as possible is the aim of
formal methods. Reviewing specification and source code is mandatory for good
development.

Regarding the metrics it is clear that the hypothesis H1 is true. At the end, with a non-
prototype translator the formal development has less bugs: 27 (13 discovered by review and
14 by test) versus 71 (review and test). The hypothesis H2 considers that the overhead is
limited. We needed around 20% more time to develop the type verifier. It is now to product
manager to decide if 20% is acceptable or not for increasing the quality of the resulting code.
We have not yet results for assessing the hypothesis H3. We have not have trainee on this
project, but part of the proof process has been subcontracted. The hypothesis H4 cannot be
assess, we have had not enough time to define a target and a security policy and to check
which help the developed model would provide to the design of the HLD. This design is a
refinement of the whole functional specification in a modular way. The hypothesis H5 is true,
the code has been embedded into a card. However, more improvements can be done on the
code generator.

6. Conclusions

At the beginning of the project we wanted to assess if formal methods can be used in
developing smart cards in such a way that gains in quality come at predictable and acceptable
cost. For verifying it we proposed five hypotheses and none of them have been invalidated. It
is clear yet that some improvements in the methodology and tool are needed.

Other results of formal development show that not all the parts of the program need to use
formal methods. For example, some low-level modules of the structural verifier were entirely
developed with B, requiring for the proof process significant efforts. Those modules could
have been developed with the standard development procedure without reducing the
confidence in the code. We also learnt that the formalization of the informal specification is a
key step where we have to pay a special attention. It was also a powerful means to find
ambiguities in the informal specification. Most of those conclusions were well known by the
community and we just point them out in our specific domain the smart card. We provided a
non trivial example of the formal method use in our domain. Moreover we implemented it
into a smart card which was a real challenge.
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