
Are Smart Cards the Ideal Domain for Applying

Formal Methods ?

Jean-Louis LANET

Gemplus Research Laboratory,

Av du Pic de Bertagne,

13881 Gémenos cedex BP 100.

jean-louis.lanet@gemplus.com

1 Introduction

The traditional approach for programming smart cards does not allow the cre-
ation of downloadable executable code and requires programmers with experi-
ence in programming in low-level languages. This approach, associated with a
high quality quali�cation process, produce secured smart card. Unfortunately, it
does not allow card manufacturers and issuers to quickly respond to the market
changes, and it limits the �exibility of smart card applications. Open smart card
programming provides a more dynamic approach to card applications. High-level
languages and security mechanisms are the basis for the programming of open
smart cards. Most notable e�orts towards such smart card systems are Java Card
[22], MultOS [14] and Smart Card for Windows [15], which provide application
developers an opportunity to develop rapidly applications. The main drawback
with this kind of smart card is the risk to download a hostile application that
will exploit a faulty implementation module of the platform.Security is always
a big concern for smart cards, but the issue is getting more intense with multi-
applicative platforms and post issuance code downloading. The correct design
and implementation of the system is the key to shun such an attack. Fault pre-
vention o�ers di�erent techniques to remove latent errors from the system. The
fault avoidance concerns methodologies and appropriate techniques to avoid the
introduction of fault during the design and the construction of the system. In
a �rst approach, one can believe that smart card can only get bene�ts of us-
ing formal methods. But it remains di�cult to integrate these methods in the
development process.

The need of formal methods in the smart card domain has three origins: mas-
tering the complexity of the new operating systems (fault avoidance), certifying
at a high level a part of the smart card and reducing the cost of the test. In a
�rst part, after presenting the smart card and its security requirements, we ex-
plain the certi�cation process that appears to be the most important vector for
introducing formal methods in the software development cycle. Then we present
some attempts to formalise complex software elements of smart cards. The use
of model checkers in order to automatically generate the test suites can notably
increase the productivity of applet development. The second part of this paper



explains why smart cards are not currently the expected success story of formal
methods.

2 Needs of security and formalism

2.1 The small and secure system

A smart card is a piece of plastic, the size of a credit card, in which a single
chip microcontroller is embedded. Usually, microcontrollers for cards contain
a microprocessor (8-bit ones are the most widespread, but 16-bit and 32-bit
processors can now be embedded in the chip) and di�erent kinds of memories:
RAM (for run-time data), ROM (in which the operating system and the basic
applications are stored), and EEPROM (in which the persistent data are stored).
Since there are strong size constraints on the chip, the amounts of memory are
small. Most smart cards sold today embed a chip with at most 512 bytes of RAM,
32 KB of ROM, and 16 KB of EEPROM. Today's smart card devices have no
on-chip power and no clock. This means that the security functions are limited
and cannot presume about the reliability of clock or power. The chip usually also
implements some techniques and functions in order to safeguard information like
limit sensors (heat, voltage, clock etc.), scrambled and distributed layout, data
encryption and memory segregation which are used to deactivate the card when
it's somehow physically attacked. A smart card cannot be totally secure; it must
just be secure enough, the goal is to make it su�ciently tamper-resistant.

Smart cards are not only storage media; they are able to execute application
software with cryptographic functions (DES, triple DES, RSA, DSS or elliptic
curves). It makes them a key technology for numerous high-security consumer
applications. Smart cards are often used either to store or manage some kind
of currency (money or tokens), to record personal information (like medical his-
tory), or to identify a person. In these applications, smart cards provide a means
to guarantee the security (con�dentiality and integrity) of the whole system. In
fact, a failure of a smart card impacts the reliability of the system. With open
smart cards, functionality of the card can be extended by downloading new pro-
grams into the card. The security requirements for such an operating system
are more stringent than those for conventional cards. The ability of adding new
applications after the issuance poses a threat and particular attention must be
paid to the post issuance loading or deleting of application.

The cardholder or a hacker has a complete control over the card after is-
suance and can subject it to any number of hacking attempts. For these reasons
(high value object, physical and logical attack in a discrete environment without
any on-line detection mechanism) the smart card is often the target of hackers.
Since around 1994, some smart cards used in pay-TV have been successfully
reverse engineered. Most of the attacks were carried out without any access to
information from the manufacturer.

In order to reach the smart cards quality requirements, it is of prime im-
portance to eradicate all the latent errors in the smart card software. For this



reason, the card issuer must develop a test strategy that eliminates all the errors
or use new development techniques. Formal methods for speci�cation and veri-
�cation have always been among the central issues in computer science. It has
a considerable impact in the hardware industry but its impact on the software
development process has been limited. This is due to the complexity of modern
software system involving thousand of lines of code. The smart card operating
system and the embedded applications are relatively small. They are well within
the limits of what can be handled by modern veri�cation tools. Several attempts
to formalize part of smart card operating systems or applications have been
done by academic researchers. Some similar work is probably done by smart
card providers but a few papers have been published.

2.2 The certi�cation process

As we saw, the security is the main characteristic of smart cards. Each smart
card provider claims that its product has the ad-hoc security. This claim can
be enforced by submitting the product for certi�cation by an independent eval-
uation lab. This process is a means to gain market share by highlighting the
di�erences between smart card providers. Sometimes regulation requires the use
of certi�ed product for some markets. Currently, a certi�cation at an EAL4 level
is mandatory in Germany and Hungary for systems that use private signature
keys.

The Common Criteria for Information Technology Security Evaluation (CC)
standard de�nes a set of criteria to evaluate the security properties of a product
in term of con�dentiality, integrity and availability. The framework is being de-
veloped jointly by the IEC (International Electrotechnical Commission) and ISO
(International Standards Organisation), with the participation of national bod-
ies. It is drawn from previous security requirements and assurance frameworks
that are the ITSEC and TCSEC.

The CC focuses mainly on the �rst part of the lifecycle: requirements, spec-
i�cations, design, development and test. The deployment and the maintenance
are not covered by the CC. The requirement phase is the most important part.
The CC are used for writing the requirements document which must be comple-
mented by a general requirement document because the CC are only concerned
by the security aspects of the system.

The Target Of Evaluation (TOE) is the part of the product or the system
that is subject to evaluation. The TOE security threats, objectives, require-
ments, and summary speci�cation of security functions and assurances measures
together form the primary inputs to the Security Target (ST). It's used by the
evaluators as the basis for evaluation. The CC also de�nes the Protection Pro�le
(PP) that allows the developers to create sets of security requirements available
for several TOEs. A PP is intended to be reusable. The CC presents the secu-
rity requirements under the distinct categories of functional requirements (e.g.,
requirements for identi�cation, authentication, non-repudiation) and assurance
requirements (e.g., constraints on the development process rigour, impacts of po-



tential security vulnerabilities). The assurance that the security objectives are
achieved is linked to:

� The con�dence in the correctness of the security functions implementation,
i.e., the assessment whether they are correctly implemented,

� The con�dence in the e�ectiveness of the security functions, i.e., the assess-
ment whether they actually satisfy the stated security objectives.

The CC contains a set of de�ned assurance levels that de�ne a scale for mea-
suring the criteria for the evaluation of PPs and STs. The Evaluation Assurance
Levels (EAL1 to EAL7) form an ordered set to allow simple comparison between
TOEs of the same kind. The role of the EALS is the same as the ITSEC security
levels, although they represent only assurance requirements. EAL levels may be
augmented to include higher assurance requirements or to substitute assurance
components. Note that the EAL may only be augmented. At EAL5 level the
assurance is gained through a formal model of the TOE security policy and
a semiformal presentation of the functional speci�cation and high-level design
and a semiformal demonstration of correspondence between them. A modular
TOE is also required. Note that the analysis must include validation of the de-
velopers covert channel analysis. The last EAL levels require a formal in-depth
and exhaustive analysis.

Three types of speci�cation styles are mandated by the CC: informal, semi-
formal and formal. An informal speci�cation is written in natural language and is
not subject to any notational restriction but it requires de�ning the meanings of
the used terms. A semiformal notation is written with a restricted syntax lan-
guage and may be diagrammatic (data-�ow diagrams, state transition diagrams,
entity-relationship diagrams, etc). A formal description is written in a notation
based upon well-established mathematical concepts. These concepts de�ne the
syntax and the semantics of the notation and the proof rules that support logical
reasoning. A correspondence can take the form of an informal demonstration, a
semiformal demonstration or a formal proof. A semiformal demonstration of
correspondence requires a structured approach at the analysis of the correspon-

dence. A formal proof requires well-established mathematical concepts and the
ability to express the security properties in the formal speci�cation language.

It is important to notice that in the USA a complete scheme for certi�cation
is set up. Seven labs received accreditation for evaluation. This year in Baltimore
will be held the �rst "Common Criteria Conference". At the beginning of the
year the SCSUG (Smart Card Security User Group) speci�ed a new PP for open
operating systems like Java Card, Windows for Smart Cards and Multos. This
shows clearly the involvement of the USA to �ll the gap between them and
Europeans country and the importance of the certi�cation process.

Gemplus obtained the �rst common criteria for Java Card last year. Two
others certi�cates EAL4+ are forecast for this summer and other certi�cations
are planned. The smart card dedicated protection pro�les (PP) were de�ned in
1999 for EAL4 certi�cation. This year several PP have been published in order
to reach EAL5 certi�cation. Moreover the GIE Carte Bancaire that requested
EAL3+ certi�cate is now moving to at least an EAL5 level. Multos obtained



in 1999 the �rst ITSEC E6 certi�cate for a part of its operating system. This
demonstrates that customers are requiring higher level certi�cates.

2.3 The complexity is increasing

Until now the complexity of smart card software was manageable by engineers.
The size of a smart card application was around some thousand of C code lines
and they all had quite the same architecture. The arrival of Java brings to the
fore the complexity of the underlying mechanisms used in the virtual machine.
It is not surprising if the �rst formal model of smart cards where devoted to this
architecture. Java Card is a subset of Java that reduces the complexity of the
model. This is probably the reason of the success of the formal speci�cation of
Java Card components. A lot of work has been done in the smart card domain
but unfortunately no one achieved a proof of a complete smart card application
neither a complete component of the virtual machine. There have been several
e�orts to formalise components of smart cards:

In [2], the authors present a part of a stack-based interpreter for a smart card
based system: Tosca. The interpreter is object-based and is written in Clasp.
It shares several features with Forth (e.g., extensibility of the language). This
language is used to create applets. The aim of the study is to provide a formal
description of a subset of the Clasp language and to use this description in order
to prove properties. They prove by induction that certain run-time errors (e.g.,
stack over�ow, non-determinism) can never occur.

The Defensive Java Virtual Machine (dJVM) has been modelled using ACL2
[7]. This work aims to provide a JVM with run time checks in order to assure
type-safe execution of the byte code. The only available document is a draft ver-
sion where not all theorems were proved to our best knowledge. No information
has been published on the complete proof of the model. An extension has been
proposed [18] on veri�cation related to proofs on object oriented byte code.

In [20], the authors propose a new approach to verify the properties of the
Java Byte code using a model checker. A Java Card veri�er performs an exhaus-
tive search in the behavioural tree of the program in order to detect data �ow
or control �ow errors. In fact, a byte code program can be seen as a description
of the transition system. The state is given by the virtual machine state. Due to
the potential in�nite state of an arbitrary program, it is necessary to derive a
�nite abstraction of the program and to restrict as much as possible the usage of
variables. This abstraction can be restricted to type information and the current
method. The state is restricted to a method interpretation.

The INRIA proposes researches on the formal semantics of Java language;
program analysis for program optimisation and methods for verifying safety and
security related properties [11]. Most of the paper presented are more related
with Java rather than Java card. The technique used for the veri�cation of
security properties is close to the previous one. They make an abstraction of
the method under inspection. They translate it into a transition system and
they verify some temporal formulae that describe an allowed path in the graph.
Their transition graph is in�nite but they proved that a bound exists on the



state number. This allows them to use a model checker to verify their formulae
[23]. In their model, all information related to the data �ow were removed and
only information linked with the control �ow and the call graph of the program
were kept. Some properties cannot be formalised with this approach like �ow of
classi�ed information and detection of covert channel.

A recent paper [10] presents a model of the Windows for Smart Card runtime
environment. The authors use the Abstract State Machine to describe formally
their system. Gemplus provided several formal models of parts of the Java Card.
We paid a particular attention to verify the correctness of the embedded code
and to demonstrate the correctness of the JVM Firewall in [16], [17].

This intense activity about the formalisation of open operating systems from
academic and industrial researchers points out the di�culty to be convinced by
the soundness of the speci�cation. There is currently an important e�ort in the
Coq and Isabelle communities to completely formalise the Java semantics at the
source and the byte code level. These e�orts are supported by smart card manu-
facturers. The importance of the correctness of the byte code veri�er requires a
formalisation and the proof of this important piece of code. But unfortunately,
this e�ort is far from the resource availability of each smart card manufacturer
and will need some forms of collaboration between them. The complete proof of
the veri�er has been estimated at around 60 man/month.

Surprisingly, the B community has never paid a similar attention to the open
operating system formalisation. In the Z community, we noticed only the work
of the York University in collaboration with Logica. The smart card domain has
several interesting and not con�dential problems that can be solved using formal
methods.

2.4 Reducing the cost of the test

We have seen that formal methods can be used for marketing motivation through
the certi�cation process and for security reason to ensure the soundness of the
speci�cation. The last point is related to productivity by reducing the cost of
the test. Card manufacturers have a fairly extensive quali�cation process. Con-
sequently, quality insurance requirements for smart cards are often very strong.
In order to ful�l these requirements, card application providers have developed
methods and tools adapted to smart card speci�c constraints. An important part
of this development is devoted to test.

Starting from speci�cations, a tester enumerates all the tests that are nec-
essary to verify that the product ful�ls its requirements. It is then always pos-
sible to prove the conformity of the implementation regarding the speci�cation.
Moreover, this approach facilitates the maintenance of tests in case of product
evolutions. In order to provide a high level of con�dence, the testers use a data
base which capitalizes all tests cases that can be done to reveal faults in smart
card applications. Then, this approach takes advantages of fault driven testing
approaches. The expected results of test are provided by a model of the applica-
tion, which is developed in parallel with the product. At last, the test coverage
can be estimated using a tool that evaluates the test coverage on the model. Test



execution is fully automated. It is then possible to stress applications, in order to
increase even more con�dence on the application. This traditional approach has
two major drawbacks: �rstly, it needs to develop two instances of the program
and any software evolution implies to modify the models, secondary during test
execution if an error occurs (in fact a divergence in the behavior) both models
must be checked. This process is secure but very costly. Generating the test cases
automatically from a speci�cation can reduce this process.

For generating test cases, we need a speci�cation. Such speci�cation can be
obtained through a formal model. Some studies propose to generate the test
cases from a B speci�cation [1], [3]. During the last decade, testing theory and
algorithms for the generation of tests have been developed from speci�cations
modeled by variants of the Labeled Transition System model (LTS). A LTS
is a structure consisting of states with transitions between them. Transitions
are labeled with actions or events. The most e�cient algorithms are based on
adaptations of on-the-�y model-checking algorithms. Academic tools such as
TGV [8] and now industrial tools such as TestComposer (Verilog) already exist.
They implement these algorithms and produce correct test cases in a formal
framework.

We choose to express the speci�cation with an UML model. The speci�ca-
tion is automatically translated into a labeled transition system thanks to the
UMLAUT tool [12]. Then we use TGV to automatically produce test cases from
this LTS and from test purposes produced by hand. We are now working on the
methodology in order to help the applet designers to enrich the UML views in
order to obtain a testable UML model.

3 The constraints

We have seen several good reasons of using formal speci�cations for smart card
applications. Surprisingly, only the productivity advantage is well understood
and accepted. Prior to integrate those methods in the development process,
several points such as: development overhead, predictability, human resistance
and tools must be solved. We believe that for the smart card domain, work must
be done on the methodology, and tools must be improved in order to e�ciently
use formal methods.

3.1 Development overhead

We have to keep in mind that the smart card is a mass product and that its
price must remain as low as possible in order to be competitive. The price of
smart card ranges from 1 to 10 Euro depending on the chip and the gross pro�t
is very weak. There is a strong pressure to reduce the development cost. The
potential overhead introduced by formal methods remains acceptable under two
conditions:

� If we develop generic components. For example, the backup mechanism, the
memory anti-stress and the protocol layer are components that can be reused



in every smart card. This overhead is paid o� on the number of produced
smart cards.

� If we can reduce the test process. This can only be done if the development
process is proven until the implementation. In this case it is possible to re-
move the unitary tests and save a lot of time. But unfortunately, the Atelier B
is currently unable to generate the code that �t in the smart card. Moreover,
when we proceed to an implementation a lot of restriction on the language
are imposed. Several structures are not accepted in an IMPLEMENTATION
clause.

E�cient conversion from speci�cation to machine code is necessary for smart
card based applications. In fact the current B0 translator has an overhead of
more than 20% compared to a manually produced code [13]. If this overhead is
acceptable for the code, it is too important for the RAM. For this purpose, we
have developed a prototype of code translator in order to meet the smart card
constraints [5].

3.2 Industrial constraints

Our main problem with a formal development is the lack of metrics to predict
the duration of such a development. Predictability is of prime importance for
smart card development, due to the burning phase. When a new development
is scheduled, we have to keep a time slot to the chip manufacturer to burn the
wafers (often a 10-14 months delay). This is often the critical path in the devel-
opment process and it is very di�cult to modify this time slot. For this reason,
it is important to be able to meet the deadlines. Due to the lack of metrics,
it remains very hazardous to evaluate the time needed for a new development.
We have to improve our knowledge by developing several case studies in order
to be able to give an accurate estimation. This allows to clearly identify the
eventual caveats of the domain. For example, achieving the work described in
[6] has proven useful when we decided to prove the FAÇADE veri�er [9] even if
the language and the static semantics are totally di�erent the problem and the
solutions where similar.

The second problem is the scalability. When we made our �rst model of the
virtual machine with a reduced number of byte codes, the proof was easily man-
ageable. Unfortunately, when we add new byte code, the complexity of the proof
increased. This has been solved by a complete redesign of the formal speci�ca-
tion. Solving a sub-problem cannot give accurate information of the complexity
of the whole problem. The last point is more related with the tool. It is often
better to adapt the design of the speci�cation to the capacity of the prover by
using the adequate structures.

For those reasons it is very di�cult for a project manager to include formal
methods in its product. We believe that the way to obtain their acceptance is
to propose formal models for generic components and to develop higher level
component (e.g., a complete virtual machine) beside the development process.



3.3 Cultural resistance

One of the di�culties for a project manager to incorporate formal methods
is the weight of the past. Until now, no bug has been discovered in a smart
card. For smart card providers it seems natural to design secure system without
formal methods. Moreover, formal methods cannot provide any help with the
up-to-date attacks (Di�erential Power Analysis) against the smart card neither
physical attacks. Logical attacks are often less considered but this idea must be
left out when considering open operating systems.

Another point is related to the designer. It is di�cult to express an abstrac-
tion of a problem and to re�ne it. People are considering formal language like
B as a new programming language and they have a lot of di�culties (abstrac-
tion capabilities, less expressive language). This point can be solved by adequate
training but if remains di�cult to specify a provable model.

3.4 Need of a methodology

We believe that a clean methodology with related metrics and tools improve-
ments would consequently help the integration of formal methods and in particu-
lar B in the software process. It is important to have guidelines for the speci�ca-
tions and proofs that help the designers. For this purpose we joined a European
project, named MATISSE in collaboration with MATRA, Soton university, Abo
Akademi, Steria and DERA. In this project we will exploit and enhance existing
methodologies and associated technologies that support the correct construction
of critical systems.

Our own methodology is related to the certi�cation process. It's often said
that the use of formal methods is time consuming and very costly, they required
very skilled people and there is an important gap between the semi formal and
the formal speci�cation. But combining a semi formal language like UML and
a formal method like B is probably the less expensive way to reach the CC re-
quirements. In [17], we explain how to apply this methodology for a smart card
certi�cation. But if this approach is well suited for certi�cation it does not help
a lot for modelling a system. Some work have been done in this direction [19] for
translating UML views, but our own experience shows the di�culty to match a
B model to an UML class diagram. Even if B shares some characteristics with
object languages, the B architecture clauses have not the same expressiveness.
We prefer to have two approaches: one dedicated to certi�cation with a prelim-
inary semi formal work, and a second one with a preliminary informal work:
rewriting the speci�cations in order to clarify them.

The lack of metrics for a B development is a problem either for predictability
and quality measurement. It is often said that a high ratio of automatically
proved proof obligations (PO) is an indication of a good design. Unfortunately,
our own experience shows that sometimes this indicator is wrong. For example,
we made two models of a virtual machine, one naïve but we a high ratio of
automatically proven PO and a second one where we regrouped the opcode per
properties. In the latter case, the ratio was poor (around 40%) but the proofs



were generic [21]. And the complete proof of the speci�cation has been done with
the second model in a shorter time. We expect that MATISSE will reveal some
metrics for quality assessment.

We expect also some tool improvements. The �rst one is linked to the code
generator that must be considerably improved in order to generate code that
�ts the smart card constraints. But other points must also be improved from er-
gonomics to proof management. The proof tree is unusable in the current version
of the tool, it is impossible to explicitly name the hypothesis, any modi�cation
of the speci�cation and the proof can be lost. There are no proof editor, neither
any means to eliminate unusable hypotheses in the stack. Currently a lot of aca-
demic work are done around the tools for the B method (parser, test generator,
code generator) and the recent announcement of Steria about the GPL licence
of the B compiler will probably help to the tool improvement.

4 Conclusions

Smart Card domain is not yet the expected success story but is probably the
ideal �eld for applying formal methods. There are a lot of good reasons for formal
methods to be well accepted. One way to di�erentiate card manufacturers will be
on security aspect and the relevant method to reach it. This goal can be achieved
through the certi�cation process that is now well handled for the medium level
(e.g., EAL5). But a new e�ort must be set up in order to reach the higher levels.
Certi�cation is only the visible part of the iceberg. The security of smart cards
relies on other work that are probably more fruitful for example the generic
components of the smart cards. But in order to generalize the use of formal
methods, we have to prepare their integration in the software process, which
remains the real challenge. For achieving it, a lot of work must be done on the
methodology, the associated metrics and on the tools.

We believe that there is not only one formal method that is suitable for smart
cards. The success of the PACAP project [4] and the well acceptance of the test
generation clearly show that there is enough room for di�erent methods. We
have now to de�ne the adequate form (size, training, and mission) for a formal
method team developing models for the Gemplus R&D.

References

1. L. Aertryck, L. Benveniste, D. Le Metayer, CASTING: A Formally Based Software

Testing Generation Method, IEEE Computer Society, Nov. 1997.

2. M. Alberda, P. Hartel, E. de Jong, Using Formal Methods to Cultivate Trust in

Smart Card Operating System, In Proceeding of CARDIS'96, pp. 111-132, Ams-

terdam,Netherlands, Sept. 1996.

3. S. Behnia, H. Waeselynck, Test Criteria De�nition for B Models, FM 99, Vol 1,

LNCS 1708, pp. 509-529, 1999.

4. P. Bieber , J. Cazin, V. Wiels, G. Zanon, P.Girard, J-L. Lanet, Electronic Purse

Applet Certi�cation, in Workshops on Secure Architectures and Information Flow,

Royal Holloway College, December 1999.



5. G. Bossu, A. Requet, Embedding Formally Proved Code in a Smart Card: Convert-

ing B to C, submitted to ICFEM, York, Sept. 2000.

6. L. Casset, J.L. Lanet, A Formal Speci�cation of the Java Byte Code Semantics

using the B method, ECOOP'99 Workhop on Formal Techniques for Java Programs,

June 1999.

7. R. Cohen, The Defensive Virtual Machine Speci�cation Version 0.5,

[http://www.cli.com/software/djvm].

8. J. -C. Fernandez, C. Jard, T. Jéron, C. Viho, Using on-the-�y veri�cation tech-

niques for the generation of test suites. In CAV '96, LNCS 1102, Springer, July

1996.

9. G. Grimaud, J.-L. Lanet, J.-J.Vandewalle, FAÇADE: a typed intermediate language

dedicated to smart cards, ESEC 99, Toulouse, Sept. 1999.

10. Y. Gurevitch, C. Wallace, Speci�cation and veri�cation of the Windows Card run-

time environment using Abstract State Machines, Microsoft Research, MSR-TR-

99-07, Feb. 1999.

11. T. Jensen, D. Le Métayer, T. Thorn, Veri�cation of control �ow based security

properties. Research Report n°1210, IRISA, Rennes Oct. 1998.

12. J.-M. Jézéquel, A. Le Guennec, F. Pennaneac'h, . Validating distributed software

modeled with UML. In Proc. Int. Workhop UML98, Mulhouse, France, June 1998.

13. J.-L. Lanet, P. Lartigue, The Use of Formal Methods for Smart Cards, a Compar-

ison between B and SDL to Model the T=1 Protocol, Proceedings of the Interna-

tional Workhop on Comparing Systems Speci�cation Techniques, Nantes, March

1998.

14. Maosco Ltd. �MultOs� Web site. [http://www.multos.com]

15. Microsoft Corp. �Smart Card for Windows� Web site.

[http://www.microsoft.com/windowsce/smartcard/].

16. S. Motré, Formal Model and Implementation of the Java Card Dynamic Security

Policy, AFADL'2000, Grenoble, Jan. 2000.

17. S. Motré and C. Teri Using B Method to Formalise the Runtime Security Policy

for a Common Criteria Evaluation, NISSC, 2000.

18. J.S. Moore, Proving Theorems about Java-like Byte Code,

[http://www.cs.utexas.edu/users/moore/publications/tjvm].

19. H.P.Nguyen, Dérivation de spéci�cations formelles B à partir de spéci�cations

semi-formelles PhD Thesis, CEDRIC, 1998.

20. J. Posegga, H. Vogt, O�ine Byte Code Veri�cation for Java Using a Model

Checker, 5th European Symposium on Research in Computer Security (ESORICS)

1998, Springer LNCS 1998.

21. A. Requet, A B Model for Ensuring Soundness of the Java Card Virtual Machine

FMICS 2000, March 2000, Berlin.

22. Sun Microsystems, Inc . Java Card 2.1 Virtual Machine, Run Time Environment,

and Application Programming Interface Speci�cation, Public Review ed., Feb. 1999.

[http://java.sun.com/products/javacard/javacard21.html].

23. T. Thorn, Véri�cation de politiques de sécurité par analyse de programmes, PhD.

Thesis n°2172, Rennes 1, Feb. 1999.


