
10/9/2002

Session #, Speaker Name 1

Session # 2538

On-card byte code
verification

L. Casset1, D. Deville2, J.-L. Lanet1
Research Engineer1, PhD Student2
Gemplus1, Lille University - RD2P lab2

The Ultimate Step

Session # 25382

Presentation Goal

Beginning

Learn how Java Card becomes
closer to Java.

Session # 25383

Learning Objectives

• As a result of this presentation, you will:
– understand the techniques used to embed

full type inference into a smart card,
– see that formal methods are of practical use

in software development.

Beginning Session # 25384

This Slide Gains Your
Audience’s Attention

Formal development of a smart card
has never been done …

Beginning

…we did it !

Complete on-card byte code verification
was considered impossible until now…

…we did it !

Session # 25385

Agenda

• Smart Card and Applet Verification

• Type Verification in a highly constrained
device a real challenge

• Java Card shows its true color

• Proof Carrying Code in practice

• Metrics

Beginning Session # 25386

Smart Card

• Heavily constrained device
– a micro module of 27mm²,
– ISO normalization,
– limited computing power.

• Mainly memory
– Read Only Memory (32-128 Kb),
– Random Access Memory (128-4096 bytes),
– EEPROM / FlashRAM (4-64Kb)

• limited number of writes (stress),
• low speed memory (write).

EEPROMROM

RAM

CPU

< 6.45 mm

<
 4

.1
7

m
m

Middle

10/9/2002

Session #, Speaker Name 2

Session # 25387

Smart Card and Java Card

Java source code

Development Library

.jar

Java
Compiler

*.java

Java Class files

.jar
Byte code verifier,
converter, and signer

Off-card loader

Card
Image

On-card
loader

API

Interpreter

O.S.

Java Card files

.cap

Java Card Virtual Machine

Session # 25388

Post Issuance and Applet
Verification

001
101
011

Use of cryptographic means

Byte Code verification
in a trusted environment

Session # 25389

Post Issuance and Applet
Verification

001
101
011

PCC or Normalization Technique

Byte Code processing,
in a non trusted environment

Session # 253810

Post Issuance and Applet
Verification

001
101
011

Stand-alone verifier

No external treatment...

Session # 253811

On-card Verification: a Real
Challenge

• A byte code verifier contains:
– a structural verifier,
– a type verifier.

• Performed once during load phase.

• The verifier is a key point of the security
architecture.

• We need the proof of the correct
implementation of the verifier using a formal
method.

Session # 253812

Inside On-card Verification

• Structural Verification
– respect the CAP file format
– perform a syntactic check of the incoming

code

• Type verification
– The verifier checks method per method that

the typing rules are not violated,
– In case of branches it must verify that types

are compatible for all the paths.

10/9/2002

Session #, Speaker Name 3

Session # 253813

Type Verification (cont.)

ifeq

Program Stack Map

sconst_0 x x x
x x xs

Session # 253814

Type Verification (Cont.)

ifeq

Program Stack Map

sconst_0 x x x
x x xs

ifeq
sconst_0

x x xs

iaload
[i s x x

goto xx

xx

i x xi0
i x xi0

ifeq

TOP

S i0

Compatible with

Session # 253815

Two Solutions

• The PCC Verifier suits low end chip,
– small memory usage,
– external pre-processing: stack map like KVM.

Proof
Generator

proof0101
1000

byte
code

0101
1000

byte
code

Loader-
Structural
Verifier

0101
1000

Proven
byte code

On-card Off-card reject applet

Type
Verifier

Session # 253816

Two Solutions

• The PCC Verifier suits low end chip,
– small memory usage,
– external pre-processing: stack map like KVM.

• The Stand-alone Verifier suits high end
smart card,
– no external preprocessing.

0101
1000

byte
code

Off-card

Loader-
Structural
Verifier

0101
1000

Proven
byte code

On-card reject applet

Type
Verifier

Session # 253817

Java Card Shows its True Colour

• Pros
– no need for external assistance
– accept all valid applets

• Cons
– known to be unfeasible because of:

• memory consumption
• time complexity (mainly unification)

Session # 253818

Memory Usage

1

10

100

1000

10000

64 128 192 256 320 384 448 512 576 640 704 768 832 832 960 960 1024 1088 1152 1216 1280 1344 1408 1472 1536 1600

Memory needed for verification

N
um

be
r

of
 c

on
ce

rn
ed

 fu
nc

ti
on

s

10/9/2002

Session #, Speaker Name 4

Session # 253819

Time Complexity

• The unification process can be complex
– it consist of finding the Least Upper Bound

(LUB) of two elements in a lattice,

– we know the answer for primitive types.

top

null

refarray Derived

short ref Object uref Object x uref Derived xint int0 uref Object y

bytearray shortarrayrefarray Objectref Derived intarrayboolarray

Session # 253820

Type Encoding: a Basic Solution

• We can pre -compute a unification table
– easy to store in ROM or EEPROM,
– efficient use for primitive type, simple to implement,

– we can do better.

top int ref Obj [bool [byte [short [int null
top top top top top top top top top
int top int top top top top top top
ref Obj top top ref Obj ref Obj ref Obj ref Obj ref Obj ref Obj
[bool top top ref Obj [bool ref Obj ref Obj ref Obj [bool

[byte top top ref Obj ref Obj [byte ref Obj ref Obj [byte
[short top top ref Obj ref Obj ref Obj [short ref Obj [short
[int top top ref Obj ref Obj ref Obj ref Obj [int [int
null top top ref Obj [bool [byte [short [int null

Session # 253821

Type Encoding: a Better Solution

• Takes into account EEPROM's stress
characteristic.

• boolarray ∩ int = 010001 & 100000 = 000000 = Top

null
(01 1111)

int
(10 0000)

ref Object
(01 0000)

bytearray
(01 0010)

shortarray
(01 0100)

intarray
(01 1000)

boolarray
(01 0001)

top
(00 0000)

Session # 253822

Software Cache

• We can use software cache to store stack
maps
– too big for RAM ,
– need to be updated many times,
– we have room in EEPROM but writes are

slow and there is the stress problem.

• Cache stack maps in RAM and EEPROM.

Session # 253823

Cache Policy

• Simple Least Recently Used (LRU) policy
– good performance and simple

implementation

• We use the control graph flow of the verified
method
– no additional cost for using it
– used during type inference initialisation

phase

Session # 253824

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program
Cache
Label1

Empty

Unify with Label1

10/9/2002

Session #, Speaker Name 5

Session # 253825

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program
Cache
Label1

Label2

Unify with Label2

Session # 253826

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program
Cache
Label1

Label2

Choose next: Label1

Session # 253827

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program
Cache
Label1

Label2

Unify with Label2

Session # 253828

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program
Cache
Label1

Label2

Choose next: Label2

Session # 253829

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program
Cache

Label1 Label3

Label2

Unify with Label3

Session # 253830

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program
Cache
Label3

Label2

Unify with Label2

10/9/2002

Session #, Speaker Name 6

Session # 253831

Control Graph Flow

Label 1

Label 2

Label 3

End of program

Beginning of program

Choose next: Label2

Unify with Label3
Unify with Label2

Choose next: Label3

End of verification

Cache
Label3

Label2

Session # 253832

Cache Policy

• Results
– only one update of data stored in EEPROM

(Label1),

– this can be avoid by control graph flow
analysis
• no need of keeping typing information for

Label1.

Session # 253833

Two Solutions

• The Stand-alone Verifier suits high end
smart card,
– no external preprocessing.

• The PCC Verifier suits low end chip,
– small memory usage,
– external pre-processing: stack map like KVM.

Session # 253834

The PCC in Practice

• Pros
– a type verification algorithm adapted to

embedded device,
– include the structural verifier part,
– a formal model and implementation.

• Cons
– an off-card part to compute type unification

mandatory,
– more memory (EEPROM) to store type

unification results.

Session # 253835

Formal Methods in Practice

• Mathematical based language,

• Provide an non ambiguous formal
specification: the model,

• Propose a methodology to refine an
implementation,

• Prove the correspondence between
specification and implementation,

High quality code

Session # 253836

High Quality Development

• Development with the B
formal method
– definition of the

architecture,
– formalisation of the

specification in an abstract
model,

– refinement of the abstract
model in a concrete model,

– automatic code generation.

Informal requirements

Abstract Model

Concrete Model

C Source Files

Review

Proof Refinement

10/9/2002

Session #, Speaker Name 7

Session # 253837

Inside the PCC verifier

Interface
Abstract Model of the CAP file

Properties and services

Type Verifier
Typing Rules of

the 184
bytecodes

Memory managementCAP file storage on-card

Structural
Verifier

Model of the 11
components

Session # 253838

The PCC Algorithm

• Needs additional typing information
– the result of type unification,
– stored into a custom component added to

the CAP file.

• The algorithm is linear
– check each instruction linearly,
– for each branching instruction, checks the

type compatibility of the target,
– after each jump, take the types contained

in the custom component.

Session # 253839

Type Verifier

• Abstract model
– the higher specification returns a boolean,
– defines the loop on all the methods,
– then, for each method, defines a loop on all

the bytecodes,
– specifies the typing rules of the 184 different

bytecodes.

• Concrete model
– refines the abstract model,
– provides a proved implementation.

Session # 253840

Structural Verifier

• Internal verifications

– each component is modelled and checked,

– provide access to information into the
component.

• External verifications

– models shared information between
components.

Session # 253841

Metrics

• Metrics to compare both implementation of
the verifiers
– including structural verification when

available,
– in terms of memory consumption.

• Metrics to compare both development for
the type verifier
– excluding structural verification,
– in terms of workload and bugs.

Session # 253842

Comparing PCC and Stand-alone
Verifiers Implementation

PCC Stand-alone
Type ROM size (kb) 18 16
Structural ROM size (kb) 24 NYI
Total ROM size (kb) 45 24
RAM (bytes) 140 128 - 756*
Applet code overhead(%) 10-20 0

*Note that the RAM usage for the standalone verifier is
dynamically tuneable

10/9/2002

Session #, Speaker Name 8

Session # 253843

Comparing Formal and Traditional
Developments - Workload

Formal Traditional
Development 12 weeks 10 weeks
Proof 6 weeks NA
Test 1 week 4 weeks
Total 19 weeks 14 weeks

Session # 253844

Comparing Formal and Traditional
Developments - Bugs

Formal Traditional
Discovered by tests 17 54
Discovered by proof 29 NA
Total 46 54

Session # 253845

Summary

• A real technological challenge
– 2/3 years ago this features were considered

impossible to implement,
– formal development for smart card was

considered as unrealistic,
– Gemplus investment in new technology.

• GemClassifier: a technology breakthrough
for the Java Card deployment

End Session # 253846

If You Only Remember One Thing…

End

GemClassifier: the first on-card proved
implementation of a

Java Card byte code verifier

Session # 2538 Session # 2538

