A Formal Specification of the Java Bytecode Semantics

using the B method
Ludovic Casset! Jean Louis Lanet 2
Phone: +33 (0)4.42.36.54.52 Phone: +33.(0)4.42.36.64.22
Ludovic.Casset @ gemplus.com Jean-Louis.Lanet@ gemplus.com

Introduction

The new platforms (i.e., Java Card, MultOS and Smart Card for Windows) allow
dynamic storage and the execution of downloaded executable content, which is based on a
virtual machine for portability across multiple smart card microcontrollers and for security
reasons. Due to the reduced amount of ressources, a specific Java has been specified for
the Java card industry, known as the Java Card 2.1 standard. The Java card specification
describes the smart card specific features of the virtual machine (i.e., Applet Firewall,
Shareable Interfaces, Installer...).

All those mechanisms prevent hostile applets to break the security of the smart card.
However the smart card security is based on the assumptions that the JCRE (Java Card
Runtime Environment) is correctly implemented. The correctness of the Applet Firewall
which is an important part of the JCRE is crucial. It is the means to avoid an applet to
reference illegally another applet objects. In fact not only the Applet Firewall but also the
complete JCRE and the virtual machine must be correctly implemented. In order to prove
such a correctness we have to use formal methods to insure that the implantation is a valid
interpretation of the specification.

In the specification, it is not explicitly explain how and when the different controls are
done (i.e., type checking, control flow...). A defensive virtual machine where all the
checks are performed at runtime has too poor performances. Thus, the smart card industry
proposes an architectural design where the checks are performed off-card. The developpers
have to extract the static and the dynamic semantics. The static constraints are performed
with an off-the-shelf verifier and the on-card interpreter implements the dynamic
semantics. If we want to formally implement the interpreter we have to expect that the
verifier has been correctly implemented. We propose hereafter a model based on the
refinement technique that avoid this potential incoherence.

After a brief presentation of related work, we present the bytecode subset used in our
model. Then, we define the state of the defensive virtual machine using the B method

I ESIL, Ecole Supérieure d’Ingénieurs de Luminy, département informatique, Luminy case 925 -
13288 Marseille cedex 09.
2 Gemplus Research Lab, Av du Pic de Bertagne, 13881 Gémenos cedex.

[Abr-96]. An example of instruction refinements is provided. Then, we conclude with the
extension of our work.

Related Work

There has been much work on a formal treatment of Java and specifically at the Java
language level by [Nip-98], [Dro-97] and [Sym-97]. They define a formal semantics for a
subset of Java in order to prove the soundness of their type system. A closer work to our
approach has been done by [Qia-98]. The author consider a subset of the bytecode and its
work aims to prove the runtime type correctness from their static typing. Using its
specification he proposes a proof of a verifier that can be deducted from its virtual
machine specification.

The Kimera project [Sir-98] proposes a verifier implementation that has been carefully
designed and tested but not based on formal methods. An interesting work has been
partially done by [Coh-96] in order to formally implement a defensive virtual machine. It
is possible to prove that this model is equivalent to an angressive interpreter plus a sound
bytecode verifier.

A new approach

Our approach is based on the Defensive Java Virtual Machine (DJVM) split in order to
obtain in the one hand the bytecode verifier and in the other hand the interpreter. At the
abstract level, we define the DJVM. By successive refinements, we extract the runtime
checks in order to de-synchronize verification and execution process. Then, we obtain
invariants representing the formal specification of the static checks. We implement those
specifications with an on-the-shelf type inference algorithm.

The Freund and Mitchell subset

Freund and Mitchell introduce in [Fre-98] a bytecode subset. Instructions in this subset
are choosen to represent, at the control flow and data levels, most of the bytecode
instructions. We use a small variant of this subset. The difference comes from the
specialization of instructions Istore and Iload which load or store local variables of type
integer. In these instructions, one can find instructions allowing integer manipulations and
also instructions allowing object creations, initializations and uses. Informal specification
of these instructions is given below (Fig.1).

By describing operational and static semantics, Freund and Mitchell prove that this
subset is sufficient to study object initialization, flow and data-flow controls.

Inc adds one to the integer in top of stack. PushO pushes integer on stack.

Pop removes the top element of the stack. If L jumps to L or to next instruction
according to the value of the integer L.

Istore x removes the integer from the top of Iload x loads value from local variable x and

stack and puts it into lacoal variable x. puts it on top of stack.

Halt terminates program execution. New o allocates a new uninitialized object of
type G on the top of stack.

Init ¢ initializes the object of type ¢ on the Use 6 performs an operation on a initialized

top of stack. object of type ©.

Fig.1. Informal specification of the instruction subset.

Flow control and type correctness

Checking a program means insuring that all instructions are executed in a safe way.
We first begin with executing controls on flow and types. We assume we work on a subset
of Java types: integer, addri (unitialized object) and addr (initialized object). For such a
work, we define a state and its properties. A state is defined by:

¢ the pc, the program counter which value is included in method domain ,

e the type stack, type of the element of the stack,

e the type frame containing types of local variables.

The expected properties of the program are:

e confinement: a program cannot access objects or part of the program out of its
workspace,

o stack access: no overflow or underflow during stack manipulation,

e initialisation: an object must be initialized once and only once. The access of an
uninitialized object is not allowed.

e type correctness: it is forbidden to convert an integer into a référence; and no arithmic
is allowed on pointer.

Assuming such constraints guarantee the correct state. Then, we use transfert functions
related to each instruction to change to another correct state. The static semantics gives the
constraint set, as the operational semantics gives the transfert functions. We define a
complete lattice with the three types described previously. To implement an algorithm
checking types, such as the one presented by Dwyer in [Dwy-95], we need such a lattice to
organize types and to have relations between them. This algorithm is implemented in the
off-card verifier.

The B model of the defensive machine

We explain the model on a particular instruction, the instruction Inc. An informal
specification of this instruction can be: Inc add one to the integer in the top of the stack

and let the rest of the stack unchanged. Clearly, the instruction, on flow level, increments
the pc to go to the next instruction. For type verification, it checks that the type on top of
stack is an integer.

Our abstract model represents the DJIVM: we perform checks on pc domain and on
types and then we execute the instruction (Fig.2)

ins_iload = SELECT (methode (apc) = iload)
THEN
IF (apc < size (methode) A top_stack < max_stack
A parametre(apc) € dom(types_frames)
A types_frames(parametre(apc))= INTEGERS)
THEN
apc :=apc + 1
Il top_stack := top_stack+1
Il types_stacks :=types_stacksér{ top_stack+1+—INTEGERS}
END
END;

Fig.2. Instruction Iload in the DJVM machine.

Then, we refine until all checks appears in the invariant. The execution is done if the
variable unchecked set by the invariant is false.

After two refinements, it is possible to express the checks with the following invariant
(Fig.3).

Vkd.((kd € dom(methode)) A methode(kd) =iload A unchecked = FALSE
=kd < size(methode) A SSTtop_stack(kd) < max_stack
A SSTtop_stack(kd)=SSTtop_stack(kd+1)-1
A SSTtypes(kd+1)(SSTtop_stack(kd+1))=INTEGERS
A SSTtypes(kd)ﬁL{SS Ttop_stack(kd)+1 +— INTEGERS}=SSTtypes(kd+1)
A parametre(kd) € dom(SSTtypes_frames(kd)) A parametre(kd)<max_frame
A parametre(kd)=0 A SSTtypes_frames(kd)(parametre(kd))=INTEGERS
A SSTtypes_frames(kd)=SSTtypes_frames(kd+1))

Fig.3. The invariant for Iload after two refinements.

Then we obtain an offensive interpreter for the instruction Iload, i.e., we just verify that
previously the program passed successfully the verifier (see below).

ins_iload = SELECT(methode (apc) = iload A unchecked = FALSE)
THEN
apc :=apc + 1
Il top_stack := top_stack+1
Il types_stacks ::types_stacksﬁ’{ top_stack+1—INTEGERS}
END;

Fig.4. The operation for instruction Iload in the last refinement.

With this approach, we bring to the fore that we split the original defensive machine.
We introduce another abstract machine to initialize the variable unchecked by performing
static checks on the bytecode. This machine is in fact the specification of our verifier. The
last refinement of the defensive machine appears to be our offensive interpreter. We have
489 Proof Obligations (PO). the project is entirely proved.

The fixed point calculus for type correctness

Computing the right type for a given pc is rather difficult because several paths can
lead to this pc in the tree of possible executions. So, as performing the verification, one
must checks that the type obtained is the right one and no error will occur during
execution.

The method we use is to compute a fixed point. It means that, considering all paths
leading to a given pc, we search the type satisfying all of them. If the program is correct,
such a type exists and is usable. Otherwise, checks raise an error.

To complete such a work, we introduce a lattice (Fig.5) over types used in the bytecode.
In our study, we have three different usable types: INTEGERS, Addri and Addr. To obtain
a complete lattice [Dwy-95], we add a top value TOP, a bottom value L, a partial-order —
and a binary operator Meet I1. We assume that TOP and _L are non usable type.

TOP
/ \
INTEGERS Addri
| |
L Addr

L
Fig.5. The complete lattice.

According to the partial-order over the lattice, we have the relations:
e | c INTEGERS c TOP,
e | — Addr ¢ Addri c TOP.

With such a lattice, we can solve the flow equations:
Types[r] = L
¥ n#r, Typesin] =TI { f (Typeslil) | i € Preds(n)}

where 1 is the root node of the tree, Types gives the type of the node n, f, is the transfert
function of the node i and Preds the set of all predecessors of node n. The transfert
function associated to each node fits with the instruction of the given node. In our study,
we have ten instructions and ten transfert functions.

<« Transfert functions f related to
each previous node of n.

—
The node n. _—

Previous nodes leading
to node n.

Fig.6. The representation of the flow equation problem.

We choose the algorithms presented by Dwyer [Dwy-95] because he proves that his
algorithms converge on the greatest fixed point. The complexity of his algorithm is
O(h.N*) where h is the height of the tree and N is the number of nodes.

In the B model we present the specification of the flow equation for the fixed point
calculus. First, we introduce the Meet operator which, in fact represents the complete
lattice over types, the partial-order and the binary operator (Fig.7).

Meet € JTYPESXJTYPES — JTYPESA

Vit.(tt € JTYPES= Vip.(tp € JTYPES =Mee(tt,tp)=Meet(tp,tt)))A

Vit.(tte JTYPES = Meet(tt,tt)=tt)A

Meet(addr,addri)=addri A Meet(addr, INTEGERS)=TOP AMeet(addr,TOP)=TOP A
Meet(addri, TOP)=TOP A Meet(addri,INTEGERS)=TOP A Meet(INTEGERS,TOP)=TOP

Fig.7. The Meet operator definition

Then, we specify the set Preds. This set is made of all predecessors of a given pc. In our
model, we add a new feature. For a given pc, we associate its predecessors and, for each
predecessor we associate the supposed type it attributes to the different variables in the
stack and in the frames through the transfert function (Fig.8).

Preds € 1..size(methode) — (1..size(methode) - JTYPES)
Preds(ka+1)=Preds(ka+1)ﬁ’ {kar—>INTEGERS}

Fig.8. Definition and example of use of Preds.

Finally, we translate the flow equation as follow (Figure 9). For each pc, we add this
element to Preds as predecessors of pc+1. We associate to pc the type of pc+1 using this
path. Then, we compute a partial fixed point thanks to the set Preds by combining types
through the complete lattice.

Vii.(iie dom(Preds(ka+1)) A Preds(ka+1)#0 A
Preds(ka+1)(ii)#SSTtypes(ka+1)(SSTtop_stack(ka+1))
=88Ttypes(ka+1)=SS Ttypes(ka)ér {SSTtop_stack(ka)

> Meet(SSTtypes(ka+1)(SSTtop_stack(ka+1)),Preds(ka+1)(ii))})

Fig.9. The flow equation in B

At the end of the program, type of variables for every pc is computed. If no unsuable
type remains, the program is correct for types point of view. Otherwise, the verifier raises
an error.

Conclusions and Future Work

We entirely proved the defensive machine model at the flow and type control level.
We are modelizing the two different parts of the defensive machine, the verifier and the
interpreter. The work is already done for the flow control and we are integrating the type
control for the instruction subset and in particular the calculus of the fixed point as
presented. The integration of the fixed point calculus is proved at 90% and we are still
working on it to improve the model.

In the meantime, we use the results of A. Requet [Req-98] on the JavaCard 2.1
bytecode specification. With his work, we bring to the fore the static and the dynamic
semantics of each real instruction. Integrating all these studies, we complete our model to
present a defensive machine, a bytecode verifier and an interpreter, matching the
JavaCard 2.1 standard.

References

[Abr-96] J. R. Abrial, The B Book. Assigning Programs to Meanings, Cambridge
University Press 1996.

[Coh-96] Cohen, Defensive Java Virtual Machine Specification
http ://www.cli.com/software/djvm

[Dro-97] S. Drossoppoulou, S. Eisenbach, Java is Type Safe - Probably .

[Dwy-95] M. Dwyer, Data Flow Analysis for verifying correctness properties of
concurrents programs, Phd thesis, University of Massachusetts, Sept 95.

[Fre-98] S. N. Freund, J. C. Mitchell A type System for Object Initialization in the Java
Bytecode Language In. Proc. Conf. On Object-Oriented Programming, Systems,
Languages, and Applications, pages 310-328. @ACM Press 1998.
http ://theory.standford.edu/~freunds.

[Qia-98] Z. Qian, Least Types for Memory Locations in Java Bytecode, Kestrel Institute,
Tech. Report, 1998.

[Nip-98] T. Nipkow, D. Oheimb, Javalight is Type-Safe - Definitely
25" ACM symposium on Principle of Programming Languages, Jan-1998.

[Req-98] A. Requet, Spécification Formelle en B d’un Convertisseur de Bytecode pour
Applets Javacard, Rapport de DEA, Université de Nantes, Septembre 1998.

[Sir-98] E. G. Sirer, A.J. Gregory, B. N. Bershad, Kimera: A Java System Architecture .
Http ://kimera.cs.washington.edu/, 1998

[Sym-97] D.Syme, Proving Java Type Soundness, Technical report, University of
Cambridge Computer Laboratory, 1997.

