
e-Commerce Security, Challenges in

Secure Element Security
 Part I Smart Card & Java Card

Challenges in Cyber Security - from paradigms to

implementations

Bucharest, Romania, 17-25 Aug. 2012

Jean-Louis Lanet

Jean-louis.lanet@unilim.fr

e-commerce

• Development of e-commerce relies on the confidence

customers have on the service,

• Increasing demand on mobile e-commerce implies the a

confidence into the mobile device,

• The seed of trust of a mobile device is the secure element,

• Can we trust the Secure Element ?

Presentation Goal

Learn how smart cards are

vulnerable to Trojan.

Agenda

• Saturday, Bucharest

– Part I Java Card Security

• Virtual Machine architecture

• Hardware attacks

– References

• Monday, Busteni

– Part II Logical Attacks

• Type confusion, Control flow deviation

• Executing arbitrary code, and countermeasures

• Laser beam as an enabling technology for combined attacks

Agenda

• Part I Java Card Security
– Introduction to Smart Card

– Virtual Machine architecture

– Hardware attacks

– Assets

What is a Smart Card?

A very secure way of storing a small amount of sensitive data

A piece of silicon on a plastic body

Chip

Microcontroller of the card

FLASH / EEPROM

 ROM

 RAM

 CPU

• ROM : CPU only NO ACCESS !

– used for embedded Operating System

• EPROM : Write once, read FOR EVER !

– Used for initialization area (e. g. Lock bytes)

• EEPROM : Write, erase, read FLEXIBLE !

– used to store applicative data or added functionalities

• RAM : Write, read TEMPORARY !

– used during power on sessions only

 Different Types of Memory ...

OS: Open cards vs. Native cards

• From a developer point of view:

– Until now, writing an application required a specific knowledge,

– No need of smart card specialists,

– Solution: use general purpose programming language (C, Java, …)

– Much more easier to integrate applications,

– More tools to test applications,

• From an end-user point of view

– Several application on a single card,

– Possibility to load/unload application when required.

Smart cards of the present days

• Java Card

– Embedded virtual machine, post issuance,

– Open standard (Java Card 3.0),

– Wide support of the industry and customers,

– Reduction of development time,

– Flavor of security

– Interoperability and multi applicative cards.

• Multos

– Based on the MEL (Multos Executable Language) interpreter.

– Operating system and memory firewalls, virtual Machine layer to provide
abstraction

– Application management including secure loading and deleting methods

Java Card Applet development

• Write your Java code

• Compile it

• Debug it (simulator)

• Verify and Convert it (specific byte code)

• Load it
– Personalization center

– Point of sale

– Over the Internet

Agenda

• Part I Java Card Security
– Introduction

– Virtual Machine architecture

– Hardware attacks

– Assets

Java Card Architecture

Java source code
Development Library

.jar

Java

Compiler

*.java

Java Class files

.jar Byte code verifier,

converter, and signer

Off-card loader

Card

Image

On-card

 loader

API

Interpreter

O.S.

Java Card files

.cap

Java Card Virtual Machine

Two specific file formats

• The CAP (Converted Applet) file format

– Contains all the classes from one package

– Semantically, is equivalent to a set of class (.class) files

– Syntactically, differs a lot from class (.class) files

• All “string names” are replaced by “token identifiers”,

• Byte codes are different

• The EXP (Export) file format

– Maintains the consistency between the originated class (.class) files and

the resulting CAP file

– Not loaded into the card

The CAP file

• Contains an executable representation of package classes

• Contains a set of components (11)

• Each component describes an aspect of CAP file
– Class info

– Executable byte code

– Linking info,…

• Optimized for small footprint by compact data structure

• Loaded on card

Java Card Memory Model

• By default, all objects are implicitly persistent

– Because we have few RAM

– Objects must survive between two sessions

• Some arrays can be transient

– For efficiency and security reasons

• Transactional mechanisms are provided

– All write operations on persistent memory are atomic

– At the programming level a mechanism to handle transactions is
also available

Java Card Memory

Transient Heap

JStack

Persistent Heap

Bytecodes &

Applets structs
Natives Layer

& JCVM

Framework APIs

Romized

Applets

RAM (~1Kb) EEPROM (~32Kb) ROM (~64Kb)

Memory spaces

Execution environment (JCRE)

• Define how a Java Card manages its resources

• Define constraints on the Java Card operating system

– Applet lifetime (installation, register and deletion)

– Logical channels and applet selection,

– Transient objects,

– Applet isolation (firewall) and sharing based on security context,

– Transaction and atomicity,

• The JCRE is at the heart of a Java Card

Package A

MyApp1

extends

Applet

JCRE

JCREObj

Package B

MyObject

MyApp2

extends

Applet

MyShared

extends

Shareable

Entry

point

object

Global

array

BC interpretation

• It is the execution engine for the byte code loaded into the

card,

• It controls byte code execution, memory allocation and

participate to the security through the firewall,

• If the interpreter is a defensive one (run time type

verification) it cost too much memory and CPU,

• If the interpreter is the one defined by Sun …

• Often it includes more tests than the firewall due to the

absence of BC verifier…

Agenda

• Part I Java Card Security
– Introduction

– Virtual Machine architecture

– Hardware attacks

– Assets

Target

• Hardware attacks aim at recovering assets with some

physical means.

– Invasive attacks,

– Non invasive attacks,

• Invasive attacks need a lot of costly equipment, training,…

– For institutional labs, destruction of the samples

• Non invasive attacks

– Affordable for public labs.

Invasive attacks

• Chip is physically and irreversibly modified (remove
the glue, can be visually detected later)
– Passive attacks :

• off line : reverse engineering of ROM code, but the chip structure
(0.35µm) reduce it, the ROM is on deep level to avoid optical reading,
dummy structure

• in line : information reading (bus, memory, etc…) by probing or analysis
of electrical potential. Counter measure scrambling, protective metallic
layers see below with an electron beam tester

– Active attacks :

• off line : modification of the component,

• in line : injection of information.

Irreversible switching from test mode to

user mode !!!

• All chip have a test mode and use poly silicon fuse
on the chip to switch to user mode.

The fuse is intact Blown fuse

Non invasive attacks

• Simple Power Analysis,

– Khokar et al., June 1998: Measure instantaneous power consumption
of a device while it runs a cryptographic algorithm

– Measurable variation in current consumption depending on instruction
and data processed,

– Different power consumption when operating on logical ones vs.
logical zeroes.

• Differential Power Analysis (same but statistical…).

• Glitch attack & Fault induction.

• Random number generator attack.

SSD Team-Xlim

1 10 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0

2E C6 91 5B F9 4A

Key value : 4A F9 5B 91 C6 2E

RSA attack - private key

Equipment used

Agenda

• Part I Java Card Security
– Introduction

– Virtual Machine architecture

– Hardware attacks

– Assets

Assets

• Products can only be attacked with hardware means,

– Allows to retrieves keys, retro-engineering of the code, modification of

the control flow,

– Needs specific knowledge, often heavy investment,

• Software attacks (upload of hostile code) can only be done on

development cards,

– Allows to retrieves keys, retro-engineering of the code, modification of

the control flow,

– Needs good knowledge on Java, affordable for students (hacker kit 20€),

– Warning :

• development card == a product card – upload;

Assets

• What you discover on a development card can help to

attack products,

– Banking cards share the same OS-VM that dev. cards,

• Reverse the operating system of a card then you obtain all

the algorithms used in a product:

– Discover the embedded countermeasures,

– Attack with a white box approach a product,

Software attacks

• Two different approaches:

– Type confusion

– Modification of the control flow

• Two main hypotheses :

– The attacker has the right to upload code, he has the keys to

authenticate and to sign the code,

– The byte code verifier is not embedded: pure software attack,

– There is a byte code verifier, a physical mean can be used.

References
• All the papers are available on the web site:
http://secinfo.msi.unilim.fr/~lanet

• Smart Card attacks
– Developing a Trojan applet in a Smart Card, J-L. Lanet, J. Iguchi-Cartigny,

Journal in Computer Virology, Vol. 6, Issue 4, pp. 343-351, 2010

– The Next Smart Card Nightmare Logical Attacks, Combined Attacks, Mutant
Applications and other Funny Things, G. Bouffard, J.-L. Lanet, Cryptography
and Security: From Theory to Applications Lecture Notes in Computer
Science, 2012, Volume 6805, pp. 405-424

– Smart Card Reverse-Engineering Code Execution Using Side-Channel
Analysis, NTCCCS, Théorie des Nombres, Codes, Cryptographie et Systèmes
de Communication, Oujda, Maroc, April 2012,

– A friendly framework for hidding fault enabled virus for Java based
smartcard, T. Razafindralambo, G. Bouffard and J.-L. Lanet, 26th Annual
IFIP WG 11.3 Working Conference on Data and Applications Security and
Privacy DBSEC 2012, LNCS vol. 7371, pp 122-128, Paris, July 11-13, 2012

– Combined Software and Hardware Attacks on the Java Card Control Flow,
CARDIS'11, G. Bouffard, J. Iguchi-Cartigny, J.-L. Lanet, pp. 283-296,
Leuven, Belgium, 14-16 September 2011,

References

• Design of countermeasures
– Evaluation of Countermeasures Against Fault Attacks on Smart Cards, A.

Sere, J-L. Lanet, J. Iguchi-Cartigny, International Journal of Security and
Its Applications Vol. 5 No. 2, pp 49-61, April, 2011

– A Dynamic Syntax Interpretation for Java Based Smart Card to Mitigate
Logical Attacks, T. Razandralambo, G. Bouffard, B. N Thampi, J.-L.
Lanet, SNDS 2012, Trivandrum, India, 11-12 October 2012

– Type classification against Fault Enabled Mutant in Java based Smart
Card, J. Dubreuil, J.-L. Lanet, G. Bouffard, J. Cartigny, SecSE 2012,
Prague, Czech Republic, 20-24 August 2012

– Incremental Dynamic Update For Java-based Smart Cards, ICONS 2010,
A. Noubissi, J. Cartigny, J.-L. Lanet, April 2010, Les Menuires

– Automatic detection of fault attack and countermeasures, WESS'2009, A.
Sere J., Iguchi-Cartigny, J-L. Lanet, 4th Workshop on Embedded Systems
Security, October 15, 2009, Grenoble

References

• Fuzzing
– Enhancing fuzzing technique for OKL4 syscalls testing, International

Workshop on Secure Software Engineering, SecSE, A. Gauthier, C.
Mazin, J. Iguchi-Cartigny, J.-L. Lanet, August 22-26, 2011, ARES
Conference publication pp.728-733, Vienna, Austria,

– Fuzzing on the HTTP protocol implementation in mobile embedded web
server, M. Barreaud, G. Bouffard, N. Kamel, J.-L. Lanet, C&ESAR11,
Rennes, France, November 2011

• Formal method for vulnerability discovering
– VTG : Vulnerability Test cases Generator, a Plugin for Rodin, A. Savary,

J.-L. Lanet, M. Frappier, T. Razafindralambo, Rodin User and Developer
Workshop, Fontainebleau, France, 28th February 2012,

– Automatic generation of vulnerability test suite for the Java Card verifier,
A. Savary, M. Frappier, J.-L. Lanet, E-smart 11, 21-23 September 2011,
Sophia Antipolis

http://sintef.org/secse

Virtual machine paradigm brings security…

Its implementation in a constrained device brings
insecurity !!!

University of Limoges is interested as an output of this
summer school:
To motivate skilled student to apply for an internship, second year

of the master in security: Cryptis, fo apply for a PhD or a post
doc,

To establish links with Romanian University either for research or
teaching in the smart card domain,

To join a proposal of an European Project dedicated to security

