
Java Card Applet validation:
methodology and tools

L. du Bousquet
�
, J.-L. Lanet

�
, H. Martin

�

Introduction

Open-cards have introduced a new life cycle for smart card embedded applications. In the case of Java Card,
they have raised the problem of embedded object-oriented applet validation.

We have developed a methodology to handle this problem. This methodology takes into account the fact
that the only permanent elements of the card are the Java Card Virtual Machine (JCVM) and the Operating
System (OS), and that most of security and robustness requirements are based on it. In order to optimize
the applet validation process, the JCVM and OS validity are integrated as test hypotheses [1]. Thus, the
validation phase is focused on the applet behavior.

off-card
loader

converter

*.java *.class *.cap
Off-card parts On-card parts

verifier andJava
compiler

Interprete

Firewall Linker

Loader
On-cardByte code

Java Card Virtual Machine

Figure 1: Java Card environment

Approach and validation environment

Our main goal is then to verify the application conformance to its specification, and to verify the applet
integration with other loaded applets within the card. Conformance testing is a black-box functional testing,
recommended by ISO for protocol validation [2]. The key points are that there is a behavioral specification
and a system implementation exhibiting the specified behaviors. The specification is a prescription of what
the system should do. The goal of the testing is to check whether the implemented system satisfies this
prescription, using the customer requirements as main purposes for the operational test process.

To apply such a process, we model the applet and its communication with other embedded elements in
UML. The resulting model is used as a specification to automatically generate executable test suites, using
COTE environment1. The COTE environment provides entry for customer main requirements that are used
as main test purposes by the tools. The automation of the test generation phase aims at reducing the test
development time and improving the quality of the tests (the produced tests conform the specification). Time
saving is then both on test development and on test debugging.

�
LSR-IMAG, BP72, 38402 St Martin d’Hères Cedex, France; lydie.du-bousquet@imag.fr�
Gemplus Research Labs, BP 100, 13881Gémenos,France; � Jean-Louis.Lanet,Hugues.Martin � @gemplus.com

1This environment was partially elaborated during the COTE RNTL National project (2000 - 2002).
http://www.irisa.fr/cote/

1

The central part of this environment (see fig. 2) is the UMLAUT/TGV test generator. From the UML
specification (composed of a class diagram, state diagrams and an object diagram) and a test purpose (test
goal), an abstract test case is generated [4, 3]. This abstract test case is expressed in UML sequence dia-
grams. Thanks to its precise level of description, it can then be automatically translated into an executable
test case for Corba, Java/RMI, or .Net platforms. The upper part of the environment (TOBIAS tool [5]) al-
lows generating massively test purposes from an abstract description we call test schemas. This facility was
introduced to test combination of function calls for every normal use and every possible misuse (these mis-
uses include wrong parameters in operation call, unexpected execution context, wrong order in the operation
call...). In our methodology, test schemas correspond to the main customer requirements, in accordance with
the applet specification.

Compilers
test cases

ExecutableUMLAUT/TGV

Test
schema(s)

TOBIAS Test
purposes

Application
Model Abstract

test cases

Figure 2: Synopsis of the prototype

Application

This environment was used to valid a real Java card applet, based on an simpler application already used in
the industry, in which we have integrated features that will potentially be used in future Java card applica-
tions. The applet consists in a banking application.

Our banking application specification was composed of one class diagram including seven classes: an
account manager that creates and deletes accounts, a transfer class that defines spending and saving rules to
transfer money from an account to another according to different thresholds and a balance class that allow
the customer to have access to its accounts. The class diagram is given in Fig. 3.

To produce tests, UMLAUT/TGV needs the behavioral specification of the applet. It should be ex-
pressed with state-machines (associated with each class of the class diagram). UMLAUT/TGV also needs a
description of the initial test configuration (expressed with object diagram). Figure 4 provides a sample of a
state machine for the account class. Figure 5 provides one initial test configuration, in which: three accounts
have been created for one customer in three different banks, no rule exists in the system and all the currency
rate are known.

The informal test plan based on the initial use cases requires at least 40 scenarios. For example, one
scenario says that “the customer has at least two accounts, execute a transfer and check the correct balances”
while another scenario says that “if the customer id is wrong than an error is raised”.

After an abstraction phase, we were able to write only 5 schemas in TOBIAS, to express the 40 scenarios.
This can be express using TOBIAS with first defining the groups (sequences of methods). For this

validation plan, we have defined six groups M1...M6. Once the groups are well defined, we apply them to
objects defining five schemas.

2

S1 = transfers.M1 ; balance.M2
S2 = accman.M3 ; accman.M4; balance.M1
S3 = currency.M5 ; currency.M6
S4 = transfers.RegisterSavingRule
S5 = transfers.RegisterSpendingRule

�������
��������� �������	

��
= ���� ������������������� � ��� �"!�#%$�&(' ��� ��)*$"+,$"�-� � ��#.$/&103254 76-8 � 8�9-8�:/;<;
 9 = � !=$��-��> � !�#1? 8 ? 8 ��&103@�4 � 8�9-8�:-8 � 6"6�;�81A 4 76-8 � 6"6-BC6-8 � 6<6"6/;D;
 : =)FE*��! � $"� � #.GH&I' ��� ��)*$"+,$"�H� � #KJH&103LM4 � 8�N"8 � 6"6"6-BO6/;"8�N 4 QP�R*STPU83P(VXWZY[83P�\^]�_.P�;";
a`
=)FE*G � + � � � #.bc& ;
ed
= � � �.fg��!�! � ���Qhi#^>j&�03kl4 P�mZn/opP 8 P S mZqrP 8 P R*s[t P ;�;
eu
= $"vw�"�����1xc�<yp���{zi+,$"hi#KJ B�| & ;

TOBIAS expands theses schemes into more than 1900 test objectives, and UMLAUT/TGV generates
the corresponding test cases.

Evaluation of the method

The most costly part of the validation process is the design of the test cases not their execution. With
TOBIAS we have the opportunity to control the generation of interesting test cases from a UML model.
One can notice that only five schemas allow to generate all the concrete test cases we needed.

The main difficulty with TOBIAS is that it is the responsibility of the test engineer to find the good data.
Another drawback is the impossibility to call a method with the result of a previous call. Those points are
currently studied.

During the COTE project, we have demonstrated the feasibility of a testing tool chain, even if yet some
links or functionalities are missing. The result is promising, especially the TOBIAS [5], a tool to produce
massively test purposes (and now test cases). This tool is well adapted to robustness validation of critical
applications.

References

[1] H.Martin. Une méthodologie de génération automatique de suites de tests pour applets Java-Card. PhD
thesis, Université de Lille 1, 2001.

[2] ISO. Information Technology, Open Systems Interconnection, Conformance Testing Methodology and
Framework. International Standard IS-9646. ISO, Geneve, 1991. Also: CCITT X.290–X.294.

[3] C. Jard and T. Jéron. TGV: theory, principles and algorithms. In The Sixth World Conference on
Integrated Design and Process Technology (IDPT’02), Pasadena, California, USA, June 2002.

[4] Y. Le Traon, T. Jéron, J.-M. Jézéquel, S. Pickin, C. Jard, and A. Le Guennec. System test synthesis
from uml models of distributed software. In D. Peled and M. Vardi, editors, Formal Techniques for
Networked and Distributed Systems - FORTE 2002, Houston,Texas, November 2002. LNCS.

[5] Y. Ledru. The tobias test generator and its adaptation to some ase challenges. In Workshop on the State
of Art in Automated Software Engineering, June 2002. http://www.isr.uci.edu/events/ASE-Workshop-
2002/program.html.

3

Currency_src

EUR_RATE=real

getBalance()

valid=false

Balance_src

amountToDisplay()
getCurrency()
inputToAmount()
setCurrency()
<<create>>

Currency_src()

CurCurrency=integer
EUR=integr
FRF=integer
USD=integer

FR_RATE=real
USD_RATE=real

Spending

1

Transfers

1

Transfers

1..20

1..20
ActivateSaving

ActivateSpending

Customer

Currency

AccountMan

TransferRequest

Util

1

GetReference
1

Transfers

Transfers

Balance

*

*

*GetBalance

1

1

1

Saving

0..10 0..20

RuleAccount

RuleTransfer

Timer Rule

0..30
timer

GetRule

0..20

1

0..10

Manage

Rule

AccountMan

AccountMan

BankOfficer

BankOfficer AccountMan

1 ManageTheAccount

Account

Balance_src()

destroyed : boolean
check()
destroy
<<create>>
Rule()
getidRule()

AccountMan_src

bkValide[3] : string
nbEl : integer
UniqueNum : integer
newaccount : Account
id : integer
i : integer

AccountMan_src()

isValidBank()
<<create>>

IsValid()
Consult()

IsValAcc()
BOcreate()
BOdelete()
getRef()

Rule

getBalanceamount()
getAccountnum()

getCustumerid()
getBankname()
credit()
debit()
<<create>>
Account()

bankname:string
accountnum : integer
balanceamount : real
customerid : integer

Account
account: integer
registrationDate : string
period : integer
threshold : real
saving_account : integer
nbrules:integer
idrule : integer

getVect

exit : boolean
ref : Account

registerSpendingRule()
getRuleSize()
<<create>>

Transfers_src()
transfer()
getRule()

myrule : Rule
Valid : boolea

Transfers_src

Customer

Customer

Customer

BalanceAccountMan

GetInformation1 1

getAccountVecor()
<<create>>

registerSavingRule()
<<create>>
SpendingRule()
check()

SpendingRule

SavingRule

check()
<<create>>
SavingRule() count : integer

i : integer

Figure 3: Class diagram of the banking application

Customer.show(balanceamount)
getBalanceamount[true] /

getBankname[true]/
Customer.show(bankname)

getCustomerid[true]/
Customer.show(customerid)

Account[accountNumber>0 AND amount >= 0] /
bankname :=bank, accountnum:=accountNumber;

balanceamouny:=amount; customerid:=CustomerIddebit[amout<=balanceamount]/
balance:=balance-amount

balanceamount:=balanceamount+amount

Accountnum[true]/Customer.show(accountnum)

credit[true]/
Created

Figure 4: State machine of the Account class

Transfer:Transfert_src

Valid=false

Currecy:Currency_src

USD_RATE=7.68640f
FR_RATE=1.0f

valid=false

aCustomer:Customer

Util

CurCurrency=FRF
EUR=1
FRF=2
USD=3
EUR_RATE=6.55957f

GetReference

Account Account Account

Currency
Transfers

Balances

GetInformation
Balances

Transfers

TransferRequest

CustomerCustomer

Customer

AccountMan

AccountMan

BankOfficer

AccountMan AccountMan AccountMan

AccountMan

Account

AccountMan

GetBalance

Manage Manage

bankname="BNP"

Fourth:Account

accountnum=4

customerid=2
balanceamount=10.0balanceamount=1000.0

Manage

TheBO:BankOfficer

UniqueNum=10
bkValide=["BNP","CA","CE"]
nbE=3

GestionnaireDeBanque:AccountMan_src

ManageTheAccount

Manage

Balance:Balance_src

balanceamount=100balanceamount=2000.0

bankname="CE"bankname="CA"
accountnum=2

Third:AccountSecond:Account

customerid=1

accountnum=3

customerid=1

First:Account

accountnum=1
bankname="BNP"
customerid=1

Figure 5: Object diagram of the banking application

4

