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Abstract. This paper presents some practical issues of a joint project
between Gemplus and ONERA. In this approach, a smart card issuer can
verify that a new applet securely interacts with already loaded applets. A
security policy has been defined that associates levels to applet attributes
and methods and defines authorized flows between levels. We propose a
technique based on model checking to verify that actual information
flows between applets are authorized. In this paper, we focus on the
development of the prototype of the analyzer and we will present the
first results.

1 Illegal Flow in Multi-applicative Smart Cards

Security is always a big concern for smart cards but it is all the more impor-
tant with multi-application smart cards and post issuance code downloading.
Opposed to mono-applicative smart cards where Operating System (OS) and
application were mixed, multi-application smart cards have drawn a clear border
between the OS, the virtual machine and the applicative code. In this context, it
is necessary to distinguish the security of the card (hardware, operating system
and virtual machine) from the security of the application. The card issuer is
responsible for the card security and the application provider is responsible for
the applet security, which relies necessarily on the card security.

The physical security is obtained by the smart card media and its tamper
resistance. The security properties that the OS guarantees are the quality of
the cryptographic mechanisms (which should be leakage resistant, i.e., resistant
against side channel attacks such as Differential Power Analysis), the correctness
of memory and I/O management.
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A Java Card virtual machine relies on the type safety of the Java language
to guarantee the innocuousness of an applet with respect to the OS, the virtual
machine, and other applets. However, this is ensured by an off-card byte-code
verifier, and extra mechanisms that have been added. A secure loader checks
before loading an applet that it has been signed (and therefore verified) by an
authorised entity (namely the card issuer). Figure 1 shows the role of the different
participants. The card issuer or a Trusted Third Party (TTP) is responsible in
delivering the certificate indicating the correctness of the verified applet. This
verification concerns the type correctness and the card issuer security policy
correctness [5].
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Fig. 1. Certification scheme

Applet providers and end users cannot control that their information flow
requirements are enforced inside the card because they do not manage it. Our
goal is to provide techniques and tools enabling the card issuer to verify that new
applets respect existing security properties defined as authorized information
flows. If the applet provider wants to load a new applet on a card, it provides
to the card issuer or to the TTP the byte code for this applet. The card issuer
has a security policy for the card and security properties that must be satisfied.
This security policy should enforce the confidentiality while taking into account
data exchange between applets.

Actually, most of multi-application smart cards, in order to build cooperative
schemes and to optimize memory usage, allow data and service sharing (i.e.,
objects sharing) between applications. Beyond this point, there is a need for a
card-wide security policy concerning all applications. A small example should
clarify this point. When an application provider A decides to share (or more
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probably to sell) some data with an application provider B, it asks for guarantees
that B is not able to resell those data or to make them available world-wide.
For example, in Java, if one decides to store the exchanged information in a
public static variable, this datum becomes readable by every one. This point is
important and difficult to verify using traditional means.

A mandatory security policy is necessary to solve the problem of re-sharing
shared objects as mentioned above [4]. The security policy should model the
information flows between the applications that, themselves, reflect the trust
relationships between the participants of the applicative scheme. The best can-
didate for such a mandatory policy appears to be a multilevel policy. This secu-
rity model uses a set of security levels ordered in a complete lattice. With this
security model, each applet is assigned a security level and each shared data has
a specific security level. This lattice represents all the legal flows. For example,
consider that the configuration to be checked includes an Air France loyalty ap-
plet (level AF), an Hertz loyalty applet (level H) and an electronic purse (level
EP). When buying a flight ticket with the purse, you add miles to your loyalty
program. Shared information from Air France and the electronic purse (level
EP+AF) may be received by Air France applet and electronic purse applet. The
same operation can be done when renting an Hertz car. This is represented by
the following lattice.
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Fig. 2. The security policy lattice

To model that applets may only communicate through shared interfaces,
direct flows between AF, H and EP are forbidden.

2 Applet Analysis

The PACAP project1 aims at checking the data flows between objects on the
card by static analysis prior to applets downloading, for a given configuration.
We verify information flow between applets that share data through shareable
interfaces. The sharing interface is the means to transfer information from an
applet to another one in Java Card. The calls to a sharing interface can be

1 The PACAP project is partially founded by MENRT contract n◦98B0252.
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issued from an applicative command (process APDU) or an external call. We
check in all the interactions if the level associated to all the variables (system
and application) does not exceed the allowed sharing level.

Our tool verifies automatically if a set of applications correctly implements a
given security policy. An application is composed of a finite number of interacting
applets. Each applet contains several methods. For efficiency reasons, we want
to limit the number of applets and methods analyzed when a new applet is
downloaded or when the security policy is modified.

Our method to verify the security property on the application byte code is
based on three elements:

– abstraction: we abstract all values of variables by computed levels;
– sufficient condition: we verify an invariant that is a sufficient condition of

the security property;
– model checking: we verify this invariant by model checking.

The abstraction mechanism and the invariant definition have been described
in [13] and [14]. The tool needs as input, a representation of the lattice and the
configuration (i.e., the set of applets).

With this information the tool transforms the byte code into a formal seman-
tics, adds the relevant invariants and performs the verification of the invariants.
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Fig. 3. Architecture of the prototype

The verification is done by an off the shelf model checker: SMV from Cadence
Lab. If the verification failed (i.e., an illegal flow has been discovered) a trace
is provided in order to remove or to extract the proof of the illegal flow. In the
case of a successful verification, a certificate can be provided as shown in the
previous picture.

The transformation into a formal model is automatic. The tool computes all
the call graphs of the application and it generates one SMV model per graph.
Two kinds of methods will especially interest us because they are the basis of
applet interactions: interface methods that can be called from other applets
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and methods invoking external methods of other applets. We generate only call
graph that include an interface method, either as the root or as a leaf. The call
graph that does not include such a method is not relevant here. Furthermore
the call graph subset only contains methods that belong to the same applet.
For a given program, we consider as inputs results from external invocations
and read attributes. We take as outputs parameters of external invocations and
modified attributes. We thus associate security levels with applet attributes and
with method invocations between applets.

3 The PACAP Prototype

The first step was to specify the translation rules between the Java byte code and
the SMV language. In order to ease the final transformation several treatments
must be done on the byte code: for example, subroutine elimination and end of
conditional branch computation.

The call graph

We have to build an SMV model for each call graph that includes an access to
a method of a shareable interface. The following figure shows the call graph of
the logfull method. The purse calls this method through the Loyalty share-
able interface. There are several possibilities of illegal information flow during
this call. The theory will impose to verify the level of the passed and returned
parameters of logfull, IsThereTransaction, getTransaction, getIdlenght,
getType and getReste method call.

The resulting call graph is a tree: for each invokeSpecial and invoke-

Virtual byte code we need to develop the sub-tree while the invokeStatic and
invokeInterface are leaves of the tree.

Subroutine elimination

Subroutines are a means to compile in an efficient way the Java try-finally blocks.
Without this mechanism, it is necessary to duplicate the code of the exception
treatment. In a subroutine call, the first action is to store the return address in
a local variable. Unfortunately with our abstraction we loose this information.
We manipulate only levels and never the contents of the variables. We have
to duplicate all the code of the subroutine even for nested subroutines. We
give hereafter an example of such an elimination. Of course we have to pay a
particular attention to the exception table and all the conditional jumps.
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Fig. 4. Logfull call graph
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Fig. 5. Subroutine elimination

Implicit dependency

Dependency can be explicit or implicit. For example, if in a branch statement,
one raises systematically an exception, it is possible when catching the exception
to infer the value of the conditional. This can be a means to transfer illegally
information. For this purpose we have to adjust the level of the state variables
to the level of the conditional. When information can be infered (when both
branch join) we have to release the previous level of the state variables. But
computing the endif (the join point) can be very difficult. According to [15],
it is possible to find structural 2-way conditional and to determine easily the
endif. A problem arises with unstructured conditionals having abnormal entry
or abnormal exit. Abnormal exit occurs when a break or a continue is inserted
in one path. In this case we choose a conservative solution by never reducing
the level. Of course this can lead to non existing illegal flow detection. When
compound conditions (at the Java level) are used this lead at the byte code level
to an abnormal entry. In this case, we have to duplicate the code and store the
value of the system variables into a stack. For example, in the following Java
program it seems obvious that the system variables must be restored before
t2. The compound condition (a or not b) is made of two conditionals that are
overlapped. It is more difficult at the byte code level to define exactly the end
of the compound condition. The solution proposed by [15] uses code duplication
and provides only one join point where the system variables have to be restored.
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Fig. 6. Compound condition and code duplication

Exception treatment

The exception mechanism modifies control flow and thus can be a means to
illegally transmit information. We have to translate into SMV the possibility
that byte code can generate new control paths. Two kinds of exception will not
be taken into account here: OutOfMemoryException and StackOverflowError.
For those exceptions, the virtual machine send back an APDU with an error code
and reinitializes the frame. Some byte code can generate one or more exceptions
as shown in the following figure.

We translate the possibility of each byte code to generate an exception, by
creating a non determinism in the choice of the next byte code to be executed.
For the virtual machine, when an exception is raised during a byte code interpre-
tation, the state of the system is not affected by the byte code. For this, we have
to indicate to all incoming paths to a given instruction the possibility to execute
this instruction or to raise exceptions. Then we have to model the modification
of the control flow which is local to the method (exception handler or exception
propagation) and in the call graph to indicate how exceptions are raised to the
caller. We describe hereafter an example on how exceptions are treated locally
in the model of the method.

In this example, after the first instruction it is possible to execute the invoke-
Special instruction or to raise a NullPointerException. The method 108, called
with invokeSpecial 108 can raise a SecurityException or an Arithmetic Excep-
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Byte code Java Exception

aaload,baload,bastrore,sastore NullPointerException,
SecurityException,
ArrayIndexOutofBoundException

aastore NullPointerException,
ArrayIndexOutofBoundException,
ArrayStoreException, SecurityException

anewarray NegativeArraySizeException

arraylength,athrow,getfield-<t>,getfield <t> this, NullPointerException,SecurityException
getfield <t> w,invokeinterface,invokevrtual,
putfield <t>,putfield <t> this,putfield <t> w

checkcast ClassCastException,SecurityException

instanceof,putstatic <t> SecurityException

invokespecial NullPointerException

sdiv,srem ArithmeticException

Fig. 7. Byte code exceptions

case {
(active & exeI=NoExecution) : {
(next (pc),bc) := switch (pc) {

-1 : (-1,nop);

0 : ({pc+1,4},load);
1 : (pc+1,invokeSpecial 108);

2 : (pc+1,load);

3 : (-1,ret);

4 : (4,athrow NullPointerException);};}
(active & exeI=SecurityException) : {
(next (pc),bc) := switch (pc) {

5 : (5,athrow SecurityException);

default : (5,nop);};}
(active & exeI=ArithmeticException) : {

6 : (7,load);

7 : (-1,ret);

default : (6,nop);};}
(∼active : {next(pc) := pc; bc := skip;}

Fig. 8. Model of the exception mechanism in SMV
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tion. This is modelled with the incoming exception variable exeI. The first one
is raised while the second is locally handeled.Using these variables allows the
exceptions to be transferred from a method to the caller.

4 Results

The PACAP case study

The key point of such a tool is its ability to deal with real smart card appli-
cations. To verify the scalability of the prototype we have developed a set of
communicating applets. They provide all the functionalities of smart card ap-
plets. They have all the administrative commands to initialize and personalize
the applet. We paid a particular attention to key administration. The three ap-
plets are written in Java, and they have been compiled and converted into cap
file in order to be downloaded into Java cards. The size of the purse cap file
is around 30 ko which represents a big application for smart cards. By analyz-
ing some methods of the loyalty package, we obtain for the average size of the
methods 58 byte codes, the maximum 281 byte codes and the minimum 4. This
provides an idea of the PACAP application.

The following picture shows the applet and their shareable interfaces. For
example, the Loyalty applet will generate four SMV models one for each method
of the interface and the ProcessAPDU command of the Loyalty. This command
represents the calls from the terminal.

�����"� ���$���"�^���

���¡ £¢¡¤ ¥
¦�§¡¨¡©vª�«£¬ ¯®n°²±

³µ´D¶O·¹¸fº`»�¼�½¿¾�À"ÁDÂ¹Ã ÄOÅ

ÆDÇZÈnÉËÊZÌ¯ÍnÎÐÏ£ÑÒËÓÕÔ
Ö�× Ø¡Ù£Ú£ÛÐÜ Ý

ÞµßDà^á�âiã\ä"åDæèçêé�ë^ì�í

î�ï�ð�ñ ò�óõô�ö�÷Døúù û^ü

ý�þÐÿ�� ��� ���	�	
����� ���
��� ��������� ���� !�"�#	$&%('�) *�+

,�-�.�/10 2�354�6�7�8�9�:	;&<�=?>�@BA�C?D&E�FHG�I J
K�L�M�N1O P�Q5R�S�T�U�V�W	X&Y�Z?[�\B]_^ `�acbHd�e f

gBhji1kmlcnporqHsutjvxwHy{z |1}

~��r�x� ���{���m����� �H�?���m�

�_�������?��� �&���c����� �
¡r¢�£�¤�¥?¦�§ ¨&©�ªc«�¬� ®�¯�°�±	²�³�´
µ�¶�·�¸º¹ »B¼&½r¾ ¿
À_Á�Â�Ã ÄÆÅ�ÇºÈ5ÉrÊ Ë
ÌHÍ�Î�ÏºÐxÑ�ÒBÓ�Ô�Õ�Ö&× Ø Ù�ÚºÛ Ü�Ý&Þ?ß�à

áHâ�ã�äºåxæ�çBè�é�ê�ë�ì í î�ï�ð ñ�ò�óxô&õ�ö

÷Hø�ù�úºûxü�ýBþ�ÿ������ � ���	� 
���������	�

������� ������ �! #"%$'&�(')
*�+�,�-/.1032'4576
8�9�:�;/<1=3>'?@7A7BDC3E!F�G	H
I�J�K�LNM OQP R�S�T!U3V
W�X�Y�ZN[ \Q] ^�_�`!a3b	cDd3e!f�g	h

i#j�kmlonqpsr1t�u

v'w�xmyozq{s|1}�~����s�o���%������� �o�

�Q����� �����D��
�Q�����q��� �!¡�¢�£ ¤q¥�¦3§D¨ ©�ª�«

¬/®�¯N° ±
²/³�´�µq¶�·�¸�¹ ºD»

¼/½¾�¿NÀ Á3ÂDÃ�ÄDÅ�Æ/Ç
È/ÉÊ�ËNÌ Í�Î	Ï�Ð3Ñ ÒqÓ�Ô�Õ�Ö'×3ØDÙ
ÚQÛ�Ü�Ý'Þ�ß�à�á
â/ãä�åqæ�ç3è é
ê/ëì�íqî�ïð�ñ ò
ó/ôõ�ö ÷Qø�ùDú�û�ü'ý�þ�ÿ�� �

������� 	�
��� ��� ���������

Fig. 9. The PACAP Case study
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The ProcessAPDU command can be split into several call graphs. This com-
mand is a dispatcher (a huge switch case) that only transmits the parameter to
the ad hoc method and sends back the result of the method. We obtain 51 SMV
models for the Loyalty application.

The next table shows information about the size of four of the 51 generated
SMV models for the package Loyalty.

Number of methods Number of SMV lines Number of properties

Debit 5 1033 2

Logfull 9 1900 12

ExchangeRate 10 2144 13

getBalance 2 339 1

Fig. 10. Characteristics of some models

Model analysis

Most of the properties are verified within 10 seconds while a third of them needs
around 8 minutes to be verified. Some properties are not verified. For example,
in the logfull call graph, the following property does not hold:

invoke isThereTransaction: assert G (bc =
invoke isThereTransaction -> (lpc | stck[stckP + 2] | stck[stckP + 1]

-> method[0]))

It corresponds in the getTransactions method to the verification of the two
parameters of the called method isThereTransaction. Those parameters are on
top of the stack and their level must not exceed the level of the shared interface
purse loyalty.

The detected flow is not really illegal. This is due to the policy used to assign
levels to the variables. All the variables of an applet have the level of the applet.
Unfortunately such a policy must be more accurately tuned. All the variables
that are transferred to an interface method must be declassified to the interface
level. After modifying our policy, all the properties hold.

The next step consists in developing hostile applets and verifying that illegal
flow are correctly detected by the PACAP prototype.

5 State of the Art

A lot of work has been going on about the analysis of security properties of Java
byte code. The major part of this work is concerned with properties verified by
SUN byte code verifier like correct typing, no stack overflow, etc. Among this
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work, two kinds of approaches can be distinguished depending on the technique
used for the verification. Most of the approaches are based on static analysis
techniques, particularly type systems [2]. One approach has used model checking
(with SMV) to specify the correct typing of Java byte code [10]. Recently, several
researchers investigated the static analysis of information flow properties quite
similar to our secure dependency property but, to our knowledge, none of them
applied their work on Java byte-code. Girard et al. [3] defined a type system to
check that a program written in a subset of the C language does not transfer high
level information in low level variables. In [3], the typing relation was related
to the secure dependency property. Volpano and Smith [11] proposed a type
system with a similar objective for a language that includes threads. They relate
their typing relation to the non-interference property. The secure dependency
property was compared with non-interference in [1]. Myers and Liskov [9] propose
a technique to analyze information flows of imperative programs annotated with
labels that aggregate the sensitivity levels associated with various information
providers. One of the interesting feature is the declassify operation that allows
providers to modify labels. They propose a linear algorithm to verify that labels
satisfy all the constraints. A few pieces of work deal with other kind of security
properties. In [7] the authors propose an automatic method for verifying that an
implementation using local security checks satisfies a global security property.
However, their approach is limited to control flow properties such as Java Virtual
Machine stack inspection. The work described in [8] focuses on integrity property
by controlling exclusively write operations to locations of references of sensitive
objects such as files or network connections.

6 Conclusion

In this paper, we have presented an approach for the certification of applets
that have to be loaded on a Java card. The security checks we propose are
complementary to the security functions already implemented on the card. The
applet firewall controls the interaction between two applets, while our analysis
has a more global view and is able to detect illicit information flow between
several applets.

Automation of the production of models is thus mandatory for the approach
to be practicable. Such an automation is relatively straightforward providing
that preliminary treatments are made to prepare the model construction, such
as construction of the call graph, method name resolution, etc.

We demonstrated the ability of the tool to verify real life models and to check
non trivial properties. But it seems difficult to obtain a fully automated tool. In
fact, when a counterexample is given by SMV it is difficult to isolate the illegal
flow and to identify in the source code the origin of the problem. We expect in
a close future to provide a more friendly user interface with enough annotations
in the SMV model to track the flow in the source code.

As a conclusion, it is clear that the Java Card is a powerful framework to
develop and to deploy applications. But the security mechanisms are not suffi-
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cient to prevent some kind of attacks of the system as presented here. We believe
that abstract interpretation and verification through a model checker is an effi-
cient means to guarantee that a given security policy is correctly implemented
by applications.
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